AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dynamically modulated synthesis of hollow metal-organic frameworks for selective hydrogenation reactions

Liyun Xiao1Chuanqi Cheng2Zhixi Li1Chaoyang Zheng1Jing Du1Meina Song1Yue Wan1Shaopeng Li1Guo Jun3Meiting Zhao1( )
Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China
Show Author Information

Graphical Abstract

A thioether-modified UiO-67 hollow metal-organic framework (MOF) (H-UiO-67-S) was prepared by dynamically modulated synthesis method. After supporting Pd nanoparticles, the Pd@H-UiO-67-S can selectively reduce 4-chloronitrobenzene to 4-chloroaniline, due to the interaction between thioether and Pd in the confined pores of H-UiO-67-S, which not only selectively adsorbs nitro groups on reactants but also limits the adsorption of amino groups on products.

Abstract

Hollow metal-organic frameworks (MOFs) have attracted increasing attention in the field of catalysis in recent years due to their unique cavity structure with fast mass-diffusion rates and easily accessible active sites. Here, we report the use of dynamic modulators, which are formed by the in-situ imine condensation reaction of 4-aminobenzoic acid and 4-formylbenzoic acid, to regulate the growth of MOFs to synthesize well-defined hollow thioether functionalized UiO-67 (denoted as H-UiO-67-S) single crystals. After supporting Pd nanoparticles, the designed catalysts Pd@H-UiO-67-S show excellent conversion (> 99.9%), selectivity (> 99.9%), and stability (10 cycles) in the selective hydrogenation of nitrobenzenes with other reducible groups. Density functional theory calculations and the experimental results reveal that Pd nanoparticles not only selectively adsorb the nitro-groups on nitrobenzene, but also restrict the adsorption of the aniline product, due to the interaction of thioether with Pd in the confined pores of H-UiO-67-S, finally result in a significant increase in selectivity of nitro-hydrogenation.

Electronic Supplementary Material

Download File(s)
12274_2023_5750_MOESM1_ESM.pdf (3.2 MB)
12274_2023_5750_MOESM2_ESM.pdf (3.5 MB)

References

[1]

Ye, T. N.; Lu, Y. F.; Li, J.; Nakao, T.; Yang, H. S.; Tada, T.; Kitano, M.; Hosono, H. Copper-based intermetallic electride catalyst for chemoselective hydrogenation reactions. J. Am. Chem. Soc. 2017, 139, 17089–17097.

[2]

Gao, M. L.; Li, L. Y.; Sun, Z. X.; Li, J. R.; Jiang, H. L. Facet engineering of a metal-organic framework support modulates the microenvironment of palladium nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202211216.

[3]

Wu, Z. Y.; Nan, H.; Shen, S. C.; Chen, M. X.; Liang, H. W.; Huang, C. Q.; Yao, T.; Chu, S. Q.; Li, W. X.; Yu, S. H. Incorporating sulfur atoms into palladium catalysts by reactive metal–support interaction for selective hydrogenation. CCS Chem. 2022, 4, 3051–3063.

[4]

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

[5]

Chen, Y. Y.; Wang, C.; Liu, H. Y.; Qiu, J. S.; Bao, X. H. Ag/SiO2: A novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes. Chem. Commun. 2005, 5298–5300.

[6]

Sun, X. H.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20–28.

[7]

Guo, S. L.; Yuan, H.; Luo, W.; Liu, X. Q.; Zhang, X. T.; Jiang, H. Q.; Liu, F.; Cheng, G. J. Isolated atomic catalysts encapsulated in MOF for ultrafast water pollutant treatment. Nano Res. 2021, 14, 1287–1293.

[8]

Zhang, J.; Wang, L.; Shao, Y.; Wang, Y. Q.; Gates, B. C.; Xiao, F. S. A Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angew. Chem., Int. Ed. 2017, 56, 9747–9751.

[9]

Cárdenas-Lizana, F.; Hao, Y. F.; Crespo-Quesada, M.; Yuranov, I.; Wang, X. D.; Keane, M. A. Kiwi-Minsker, L. Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: Role of the support. ACS Catal. 2013, 3, 1386–1396.

[10]

Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

[11]

Li, L. Y.; Li, Z. X.; Yang, W. J.; Huang, Y. M.; Huang, G.; Guan, Q. Q.; Dong, Y. M.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem 2021, 7, 686–698.

[12]

Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2019, 2, 873–881.

[13]

Li, S. P.; Du, J.; Zhang, B.; Liu, Y. Z.; Mei, Q. Q.; Meng, Q. L.; Dong, M. H.; Du, J.; Zhao, Z. J.; Zheng, L. R. et al. Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural by exploiting the synergy between steric hindrance and hydrogen spillover. Acta Phys. Chim. Sin. 2022, 38, 2206019.

[14]

Makosch, M.; Lin, W. I.; Bumbálek, V.; Sá, J.; Medlin, J. W.; Hungerbühler, K.; van Bokhoven, J. A. Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes. ACS Catal. 2012, 2, 2079–2081.

[15]

Wu, Q. F.; Zhang, B.; Zhang, C.; Meng, X. C.; Su, X.; Jiang, S.; Shi, R. H.; Li, Y.; Lin, W. W.; Arai, M. et al. Significance of surface oxygen-containing groups and heteroatom P species in switching the selectivity of Pt/C catalyst in hydrogenation of 3-nitrostyrene. J. Catal. 2018, 364, 297–307.

[16]

Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

[17]

Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

[18]

Guo, J.; Qin, Y. T.; Zhu, Y. F.; Zhang, X. F.; Long, C.; Zhao, M. T.; Tang, Z. Y. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem. Soc. Rev. 2021, 50, 5366–5396.

[19]

Zhu, J.; Chen, X. Y.; Thang, A. Q.; Li, F. L.; Chen, D.; Geng, H. B.; Rui, X. H.; Yan, Q. Y. Vanadium-based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat 2022, 3, 384–416.

[20]

Qin, Y. T.; Guo, J.; Zhao, M. T. Metal-organic framework-based solid acid materials for biomass upgrade. Trans. Tianjin Univ. 2021, 27, 434–449.

[21]

Liao, Y. J.; Zhao, K.; Yang, J. H.; An, X. F.; Zhang, P.; Dou, Y. H.; Zhao, M. T.; Fu, D. Hetero-shelled hollow structure coupled with non-thermal plasma inducing spatial charge rearrangement for superior NO conversion and sulfur resistance. Small 2022, 18, 2106680.

[22]

Wang, Y. Q.; Zhong, Z. X.; Liu, T. K.; Liu, G. L.; Hong, X. L. Cu@UiO-66 derived Cu+–ZrO2 interfacial sites for efficient CO2 hydrogenation to methanol. Acta Phys. Chim. Sin. 2021, 37, 2007089.

[23]

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

[24]

Li, L. Y.; Li, Y. X.; Jiao, L.; Liu, X. S.; Ma, Z. T.; Zeng, Y. J.; Zheng, X. S.; Jiang, H. L. Light-induced selective hydrogenation over PdAg nanocages in hollow MOF microenvironment. J. Am. Chem. Soc. 2022, 144, 17075–17085.

[25]

Qin, N. Q.; Pan, A.; Yuan, J.; Ke, F.; Wu, X. Y.; Zhu, J.; Liu, J. Q.; Zhu, J. F. One-step construction of a hollow Au@bimetal-organic framework core–shell catalytic nanoreactor for selective alcohol oxidation reaction. ACS Appl. Mater. Interfaces 2021, 13, 12463–12471.

[26]

Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

[27]

Liu, D.; Wan, J. W.; Pang, G. S.; Tang, Z. Y. Hollow metal-organic-framework micro/nanostructures and their derivatives: Emerging multifunctional materials. Adv. Mater. 2019, 31, 1803291.

[28]

Qiu, T. J.; Gao, S.; Liang, Z. B.; Wang, D. G.; Tabassum, H.; Zhong, R. Q.; Zou, R. Q. Pristine hollow metal-organic frameworks: Design, synthesis and application. Angew. Chem., Int. Ed. 2021, 60, 17314–17336.

[29]

Pang, M. L.; Cairns, A. J.; Liu, Y. L.; Belmabkhout, Y.; Zeng, H. C.; Eddaoudi, M. Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. J. Am. Chem. Soc. 2013, 135, 10234–10237.

[30]

Zhao, Y. Q.; Ni, X. J.; Ye, S. J.; Gu, Z. G.; Li, Y. X.; Ngai, T. A smart route for encapsulating Pd nanoparticles into a ZIF-8 hollow microsphere and their superior catalytic properties. Langmuir 2020, 36, 2037–2043.

[31]

Kim, H.; Lah, M. S. Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures. Dalton Trans. 2017, 46, 6146–6158.

[32]

Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990–5993.

[33]

Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 5512–5516.

[34]

Zhang, W.; Jiang, X. F.; Zhao, Y. Y.; Carné-Sánchez, A.; Malgras, V.; Kim, J.; Kim, J. H.; Wang, S. B.; Liu, J.; Jiang, J. S. et al. Hollow carbon nanobubbles: Monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 2017, 8, 3538–3546.

[35]

He, T.; Chen, S. M.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W. P.; Wang, X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem., Int. Ed. 2018, 57, 3493–3498.

[36]

He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X. Metal-organic framework based microcapsules. Angew. Chem., Int. Ed. 2018, 57, 10148–10152.

[37]

Yang, D. R.; Yu, H. D.; He, T.; Zuo, S. W.; Liu, X. Z.; Yang, H. Z.; Ni, B.; Li, H. Y.; Gu, L.; Wang, D. et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 2019, 10, 3844.

[38]

Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Well-defined metal-organic framework hollow nanocages. Angew. Chem., Int. Ed. 2014, 53, 429–433.

[39]

Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 53, 12517–12521.

[40]

Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367.

[41]

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

[42]

Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

[43]

Kim, J.; Nam, D.; Kitagawa, H.; Lim, D. W.; Choe, W. Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Res. 2021, 14, 392–397.

[44]

Xu, Z. M.; Cao, J. Z.; Chen, X.; Shi, L. Y.; Bian, Z. F. Enhancing photocatalytic performance of NH2-UIO66 by defective structural engineering. Trans. Tianjin Univ. 2021, 27, 147–154.

[45]

Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem.—Eur. J. 2011, 17, 6643–6651.

[46]

Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gándara, F.; Bürgi, H. B.; Yaghi, O. M. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem., Int. Ed. 2015, 54, 11162–11167.

[47]

Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638.

[48]

Qin, Y. T.; Li, Z. X.; Duan, Y. L.; Guo, J.; Zhao, M. T.; Tang, Z. Y. Nanostructural engineering of metal-organic frameworks: Construction strategies and catalytic applications. Matter 2022, 5, 3260–3310.

[49]

Das, M. K.; Bobb, J. A.; Ibrahim, A. A.; Lin, A.; AbouZeid, K. M.; El-Shall, M. S. Green synthesis of oxide-supported Pd nanocatalysts by laser methods for room-temperature carbon–carbon cross-coupling reactions. ACS Appl. Mater. Interfaces 2020, 12, 23844–23852.

[50]

Raza, F.; Yim, D.; Park, J. H.; Kim, H. I.; Jeon, S. J.; Kim, J. H. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light. J. Am. Chem. Soc. 2017, 139, 14767–14774.

[51]

Zhang, Z. C.; Liu, Y.; Chen, B.; Gong, Y.; Gu, L.; Fan, Z. X.; Yang, N. L.; Lai, Z. C.; Chen, Y.; Wang, J. et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 2016, 28, 10282–10286.

[52]

Li, Z. X.; Hu, M. L.; Liu, J. H.; Wang, W. W.; Li, Y. J.; Fan, W. B.; Gong, Y. X.; Yao, J. S.; Wang, P.; He, M. et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022, 15, 1983–1992.

[53]

Zhao, X. J.; Zhou, L. Y.; Zhang, W. Y.; Hu, C. Y.; Dai, L.; Ren, L. T.; Wu, B. H.; Fu, G.; Zheng, N. F. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes. Chem 2018, 4, 1080–1091.

[54]

Lu, T. Y.; Li, T. F.; Shi, D. S.; Sun, J. L.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N,S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat 2021, 2, 591–602.

[55]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[56]
Jing, W. T.; Shen, H.; Qin, R. X.; Wu, Q. Y.; Liu, K. L.; Zheng, N. F. Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: From atomically dispersed catalysts to atomically precise clusters. Chem. Rev., in press, https://doi.org/10.1021/acs.chemrev.2c00569.
[57]

Gao, Y.; Yang, R.; Wang, C. H.; Liu, C. B.; Wu, Y. M.; Li, H. Z.; Zhang, B. Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Sci. Adv. 2022, 8, eabm9477.

[58]

Li, H. Z.; Gao, Y.; Wu, Y. M.; Liu, C. B.; Cheng, C. Q.; Chen, F. P.; Shi, Y. M.; Zhang, B. σ-Alkynyl adsorption enables electrocatalytic semihydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdSx nanocapsules. J. Am. Chem. Soc. 2022, 144, 19456–19465.

[59]

Ling, L. L.; Yang, W. J.; Yan, P.; Wang, M.; Jiang, H. L. Light-assisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in close proximity. Angew. Chem., Int. Ed. 2022, 61, e202116396.

[60]

An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840.

Nano Research
Pages 11334-11341
Cite this article:
Xiao L, Cheng C, Li Z, et al. Dynamically modulated synthesis of hollow metal-organic frameworks for selective hydrogenation reactions. Nano Research, 2023, 16(8): 11334-11341. https://doi.org/10.1007/s12274-023-5750-7
Topics:

824

Views

11

Crossref

12

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 03 March 2023
Revised: 09 April 2023
Accepted: 16 April 2023
Published: 20 May 2023
© Tsinghua University Press 2023
Return