AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficiently coupled glucose oxidation for high-value D-glucaric acid with ultradurable hydrogen via Mn(III) in acidic solution

Junhua Li1Yi Jiang1Xu Zhang1Yidan Huo1Fanglin Du1Yongxiao Tuo3( )Zhiyan Guo1( )Dawei Chen1( )Shenghua Chen2( )
College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China
State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

Acidic water oxidation was replaced by glucose oxidation to produce high-value D-gluconic acid via a Mn-based catalyst for ultra-durable hydrogen production.

Abstract

The electrooxidation of the alcohol and aldehyde molecules instead of water coupled with H2 production has been proven to be effective for producing high-value fine chemicals under alkaline conditions. It is also noteworthy that under acidic conditions, the stability of non-noble metal water oxidation catalysts remains a great challenge due to the lattice oxygen mechanism. Hence, we coupled the biomass-derived glucose oxidation for high-value D-glucaric acid (GRA) with ultra-durable hydrogen in acid solution over a Yb-MnO2 catalyst. The Mn3+ regulated by Yb atoms doped in MnO2 can effectively optimize the adsorption and desorption processes of the alcohol and aldehyde group and improve the intrinsic activity but cannot for H2O. The catalyst exhibited extremely high activity and stability after 50 h for glucose oxidation, inhibiting the lattice oxygen process and MnO4− formation, while the activity was quickly lost within 0.5 h for water oxidation. Density functional theory (DFT) calculations further demonstrated that glucose oxidation reaction proceeds preferentially due to the oxidation of aldehyde group with lower adsorption-free energy (−0.4 eV) than water (ΔG > 0 eV), avoiding the lattice oxygen mechanism. This work suggests that biomass-derived glucose oxidation not only provides a cost-effective approach for high-value chemicals, but also shows an extremely potential as an alternative to acidic oxygen evolution reaction (OER) for ultradurable H2 production.

Electronic Supplementary Material

Download File(s)
12274_2023_5752_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[2]

Gao, J. J.; Tao, H. B.; Liu, B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2021, 33, 2003786.

[3]

Hu, K. L.; Ohto, T.; Nagata, Y.; Wakisaka, M.; Aoki, Y.; Fujita, J. I.; Ito, Y. Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction. Nat. Commun. 2021, 12, 203.

[4]

Yan, D. F.; Mebrahtu, C.; Wang, S. Y.; Palkovits, R. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output. Angew. Chem., Int. Ed. 2023, 62, e202214333.

[5]

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

[6]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[7]

Fan, C.; Wang, X.; Wu, X. R.; Chen, Y. S.; Wang, Z. X.; Li, M.; Sun, D. M.; Tang, Y. W.; Fu, G. T. Neodymium-evoked valence electronic modulation to balance reversible oxygen electrocatalysis. Adv. Energy Mater. 2023, 13, 2203244.

[8]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[9]

Yan, D. F.; Xia, C. F.; Zhang, W. J.; Hu, Q.; He, C. X.; Xia, B. Y.; Wang, S. Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317.

[10]

Wang, N.; Ou, P. F.; Miao, R. K.; Chang, Y. X.; Wang, Z. Y.; Hung, S. F.; Abed, J.; Ozden, A.; Chen, H. Y.; Wu, H. L.; et al. Doping shortens the metal/metal distance and promotes OH coverage in non-noble acidic oxygen evolution reaction catalysts. J. Am. Chem. Soc. 2023, 14, 7829–7836.

[11]

Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Zhang, Z. J.; Ni, B. J. Boride-based electrocatalysts: Emerging candidates for water splitting. Nano Res. 2020, 13, 293–314.

[12]

Zhu, H.; Sun, S. S.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[13]

Zhang, N.; Chai, Y. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 2021, 14, 4647–4671.

[14]

Wu, Y. Z.; Zhao, Y. Y.; Zhai, P. L.; Wang, C.; Gao, J. F.; Sun, L. C.; Hou, J. G. Triggering lattice oxygen activation of single-atomic Mo sites anchored on Ni-Fe oxyhydroxides nanoarrays for electrochemical water oxidation. Adv. Mater. 2023, 34, 220523.

[15]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[16]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L. Electrocatalytic hydrogen production trilogy. Angew. Chem., Int. Ed. 2021, 60, 19550–19571.

[17]

Li, A. L.; Kong, S.; Guo, C. X.; Ooka, H.; Adachi, K.; Hashizume, D.; Jiang, Q. K.; Han, H. X.; Xiao, J. P.; Nakamura, R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 2022, 5, 109–118.

[18]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[19]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[20]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[21]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[22]

Zhu, Y.; Wang, X.; Zhu, X. H.; Wu, Z. X.; Zhao, D. S.; Wang, F.; Sun, D. M.; Tang, Y. W.; Li, H.; Fu, G. T. Improving the oxygen evolution activity of layered double-hydroxide via erbium-induced electronic engineering. Small 2023, 19, 2206531.

[23]

Kasavi, C.; Finore, I.; Lama, L.; Nicolaus, B.; Oliver, S. G.; Oner, E. T.; Kirdar, B. Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass Bioenergy 2012, 45, 230–238.

[24]

Park, M.; Gu, M. S.; Kim, B. S. Tailorable electrocatalytic 5-hydroxymethylfurfural oxidation and H2 production: Architecture–performance relationship in bifunctional multilayer electrodes. ACS Nano 2020, 14, 6812–6822.

[25]

Cha, H. G.; Choi, K. S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 2015, 7, 328–333.

[26]

Hayashi, E.; Yamaguchi, Y.; Kamata, K.; Tsunoda, N.; Kumagai, Y.; Oba, F.; Hara, M. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. J. Am. Chem. Soc. 2019, 141, 890–900.

[27]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

[28]

Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 15898–15903.

[29]

Wang, X.; Wang, J. W.; Wang, P.; Li, L. C.; Zhang, X. Y.; Sun, D. M.; Li, Y. F.; Tang, Y. W.; Wang, Y.; Fu, G. T. Engineering 3d–2p–4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv. Mater. 2022, 34, 2206540.

[30]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[31]

Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

[32]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[33]

Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N–N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.

[34]

Liu, W. J.; Xu, Z. R.; Zhao, D. T.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265.

[35]

Zhang, Q. Z.; Wan, Z. H.; Yu, I. K. M.; Tsang, D. C. W. Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: A critical review. J. Cleaner Prod. 2021, 312, 127745.

[36]

Li, Y.; Wei, X. F.; Han, S. F.; Chen, L. S.; Shi, J. L. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions. Angew. Chem., Int. Ed. 2021, 60, 21464–21472.

[37]

Si, D.; Xiong, B. Y.; Chen, L. S.; Shi, J. L. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catal. 2021, 1, 941–955.

[38]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[39]

Yan, G. B.; Lian, Y. B.; Gu, Y. D.; Yang, C.; Sun, H.; Mu, Q. Q.; Li, Q.; Zhu, W.; Zheng, X. S.; Chen, M. Z. et al. Phase and morphology transformation of MnO2 induced by ionic liquids toward efficient water oxidation. ACS Catal. 2018, 8, 10137–10147.

[40]

Lv, Y.; Kong, A. Q.; Zhang, H. J.; Yang, W. W.; Chen, Y. C.; Liu, M. H.; Fu, Y.; Zhang, J. L.; Li, W. Electrocatalytic oxidation of toluene into benzaldehyde based on molecular oxygen activation over oxygen vacancy of heteropoly acid. Appl. Surf. Sci. 2022, 599, 153916.

[41]

Choi, Y.; Lim, D.; Oh, E.; Lim, C.; Baeck, S. H. Effect of proton irradiation on electrocatalytic properties of MnO2 for oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 11659–11664.

[42]

Chan, Z. M.; Kitchaev, D. A.; Weker, J. N.; Schnedermann, C.; Lim, K.; Ceder, G.; Tumas, W.; Toney, M. F.; Nocera, D. G. Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts. Proc. Natl. Acad. Sci. USA 2018, 115, E5261–E5268.

[43]

Tian, H.; Zeng, L. M.; Huang, Y. F.; Ma, Z. H.; Meng, G.; Peng, L. X.; Chen, C.; Cui, X. Z.; Shi, J. L. In situ electrochemical Mn(III)/Mn(IV) generation of Mn(II)O electrocatalysts for high-performance oxygen reduction. Nano-Micro Lett. 2020, 12, 161.

[44]

Tao, H. B.; Xu, Y. H.; Huang, X.; Chen, J. Z.; Pei, L. J.; Zhang, J. M.; Chen, J. G.; Liu, B. A general method to probe oxygen evolution intermediates at operating conditions. Joule 2019, 3, 1498–1509.

[45]

Kong, D. C.; Dong, C. F.; Ni, X. Q.; Zhang, L.; Luo, H.; Li, R. X.; Wang, L.; Man, C.; Li, X. G. Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment. Corros. Sci. 2020, 166, 108425.

[46]

Zhang, S. C.; Liu, Z. F.; Ruan, M. N.; Guo, Z. G.; E, L.; Zhao, W.; Zhao, D.; Wu, X. F.; Chen, D. M. Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Appl. Catal. B: Environ. 2020, 262, 118279.

[47]

Solmi, S.; Morreale, C.; Ospitali, F.; Agnoli, S.; Cavani, F. Oxidation of D-glucose to glucaric acid using Au/C catalysts. ChemCatChem 2017, 9, 2797–2806.

[48]

Bender, M. T.; Warburton, R. E.; Hammes-Schiffer, S.; Choi, K. S. Understanding hydrogen atom and hydride transfer processes during electrochemical alcohol and aldehyde oxidation. ACS Catal. 2021, 11, 15110–15124.

Nano Research
Pages 10748-10755
Cite this article:
Li J, Jiang Y, Zhang X, et al. Efficiently coupled glucose oxidation for high-value D-glucaric acid with ultradurable hydrogen via Mn(III) in acidic solution. Nano Research, 2023, 16(8): 10748-10755. https://doi.org/10.1007/s12274-023-5752-5
Topics:

825

Views

4

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 18 March 2023
Revised: 16 April 2023
Accepted: 17 April 2023
Published: 01 July 2023
© Tsinghua University Press 2023
Return