AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A homologous strategy to parallelly construct doped MOFs-derived electrodes for flexible solid-state hybrid supercapacitors

Yi-Lin Liu1,2Ling Wang1Qingyi Zeng1Qi Kang3( )Cheng Yan4( )
College of Mechanical Engineering, University of South China, Hengyang 421001, China
School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
School of Chemistry, Faculty of Science, The University of Sydney, Sydney 2006, Australia
Show Author Information

Graphical Abstract

A novel homologous strategy is proposed to parallelly synthesize both positive and negative electrodes for flexible solid-state asymmetric supercapacitors, which exhibit good cycling stability, excellent flexibility, and high-power density, demonstrating great potential for future portable and wearable energy storage devices.

Abstract

Developing efficient and cost-effective electrode materials is of essential significance to advance various energy storage technologies, among which flexible supercapacitors hold great promise to meet the growing popularity of wearable electronics. Herein, we report a homologous strategy to parallelly synthesize phosphorus-doped ZnCo2O4 (P-ZnCo2O4@NCC) and nitrogen-doped carbon (NC@NCC) both derived from ZnCo-metal-organic frameworks (MOFs) precursors in-situ grown on dopamine-modified carbon cloth (NCC) as conductive substrates. Impressively, the as-obtained P-ZnCo2O4@NCC can achieve a high specific capacitance of 2702.2 mF∙cm−2 at 1 mA∙cm−2 with the capacitance retention rate exceeding 70.6% at 10 mA∙cm−2, demonstrating the outstanding rate capability. Moreover, flexible solid-state hybrid supercapacitors, using P-ZnCo2O4@NCC as positive electrode and NC@NCC as negative electrode, are assembled with poly(vinyl alcohol) (PVA)/KOH as the gel electrolyte, which deliver the energy density of 11.9 mWh∙cm−3 when the power density reaches up to 47.3 mW∙cm−3. In addition, 85.15% of the initial specific capacitance is maintained after 5000 continuous cycles and no obvious capacitance decay is observed under different bending conditions, revealing the excellent cycling stability and flexibility. As a proof-of-concept demonstration, two as-assembled hybrid supercapacitors connected in series can light up a red light-emitting diode (LED) under the bending angle of 180°, heralding the feasibility for broad practical applications.

Electronic Supplementary Material

Download File(s)
12274_2023_5753_MOESM1_ESM.pdf (1.2 MB)
12274_2023_5753_MOESM2_ESM.pdf (754.8 KB)

References

[1]

Lv, T.; Liu, M. X.; Zhu, D. Z.; Gan, L. H.; Chen, T. Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv. Mater. 2018, 30, 1705489.

[2]

Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 2019, 18, 246–252.

[3]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[4]

Keum, K.; Kim, J. W.; Hong, S. Y.; Son, J. G.; Lee, S. S.; Ha, J. S. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv. Mater. 2020, 32, 2002180.

[5]

Zheng, Y. C.; Wang, Y. L.; Zhao, J. P.; Li, Y. Electrostatic interfacial cross-linking and structurally oriented fiber constructed by surface-modified 2D MXene for high-performance flexible pseudocapacitive storage. ACS Nano 2023, 17, 2487–2496.

[6]

Zhao, Z. F.; Wang, X. J.; Yao, M. J.; Liu, L. L.; Niu, Z. Q.; Chen, J. Activated carbon felts with exfoliated graphene nanosheets for flexible all-solid-state supercapacitors. Chin. Chem. Lett. 2019, 30, 915–918.

[7]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[8]

Wang, X. X.; Liu, K. H.; Li, J.; Liu, Y. Y.; Wang, M. R.; Cui, H. T. Creation of an extrinsic pseudocapacitive material presenting extraordinary cycling-life with the battery-type material Co(OH)2 by S2− doping for application in supercapacitors. Chem. Eng. J. 2023, 451, 138969.

[9]

He, Y. N.; Liu, T.; Song, J. N.; Wang, Y. W.; Zhang, Y. X.; Feng, J.; Meng, A. L.; Li, G. C.; Wang, L.; Zhao, J. et al. Lithiation-induced controllable vacancy engineering for developing highly active Ni3Se2 as a high-rate and large-capacity battery-type cathode in hybrid supercapacitors. J. Energy Chem. 2023, 78, 37–46.

[10]

Kunwar, R.; Harilal, M.; Krishnan, S. G.; Pal, B.; Misnon, I. I.; Mariappan, C. R.; Ezema, F. I.; Elim, H. I.; Yang, C. C.; Jose, R. Pseudocapacitive charge storage in thin nanobelts. Adv. Fiber Mater. 2019, 1, 205–213.

[11]

Zhou, J. J.; Li, Q.; Chen, C.; Li, Y. L.; Tao, K.; Han, L. Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors. Chem. Eng. J. 2018, 350, 551–558.

[12]

Lai, C. W.; Wang, S. H.; Cheng, L. L.; Wang, Y. X.; Fu, L.; Sun, Y.; Lin, B. P. High-performance asymmetric supercapacitors of advanced double ion-buffering reservoirs based on battery-type hierarchical flower-like Co3O4-GC microspheres and 3D holey graphene aerogels. Electrochim. Acta 2021, 365, 137334.

[13]

Liu, S. D.; Yin, Y.; Shen, Y.; Hui, K. S.; Chun, Y. T.; Kim, J. M.; Hui, K. N.; Zhang, L. P.; Jun, S. C. Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 2020, 16, 1906458.

[14]

Liu, S. D.; Kang, L.; Hu, J. S.; Jung, E.; Zhang, J.; Jun, S. C.; Yamauchi, Y. Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors. ACS Energy Lett. 2021, 6, 3011–3019.

[15]

Yu, D. B.; Ge, L.; Wu, B.; Wu, L.; Wang, H. T.; Xu, T. W. Precisely tailoring ZIF-67 nanostructures from cobalt carbonate hydroxide nanowire arrays: Toward high-performance battery-type electrodes. J. Mater. Chem. A 2015, 3, 16688–16694.

[16]

Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283.

[17]

Zhan, W. W.; Sun, L. M.; Han, X. G. Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 2019, 11, 1.

[18]

Wang, J.; Zhang, J.; Duan, S. R.; Jia, L. J.; Xiao, Q. B.; Liu, H. T.; Hu, H. M.; Cheng, S.; Zhang, Z. Y.; Li, L. G. Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode. Nano Lett. 2022, 22, 8008–8017.

[19]

Sakamoto, R.; Fukui, N.; Maeda, H.; Toyoda, R.; Takaishi, S.; Tanabe, T.; Komeda, J.; Amo-Ochoa, P.; Zamora, F.; Nishihara, H. Layered metal-organic frameworks and metal-organic nanosheets as functional materials. Coord. Chem. Rev. 2022, 472, 214787.

[20]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[21]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[22]

Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

[23]

Gao, Z. G.; Iqbal, A.; Hassan, T.; Zhang, L. M.; Wu, H. J.; Koo, C. M. Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives. Adv. Sci. 2022, 9, 2204151.

[24]

Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066.

[25]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[26]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[27]

Liao, L. P.; Zheng, K.; Zhang, Y.; Li, X. Z.; Jiang, D. G.; Liu, J. Q. Self-templated pseudomorphic transformation of ZIF into layered double hydroxides for improved supercapacitive performance. J. Colloid Interface Sci. 2022, 622, 309–318.

[28]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[29]

Xue, B.; Li, K. Z.; Gu, S. Y.; Lu, J. H. Zeolitic imidazolate frameworks (ZIFs)-derived NixCo3−xO4/CNTs nanocomposites with enhanced electrochemical performance for supercapacitor. J. Colloid Interface Sci. 2018, 530, 233–242.

[30]

Zhang, Z.; Deng, S. L.; Wang, D. L.; Qing, Y.; Yan, G.; Li, L.; Wu, Y. Q. Low-tortuosity carbon electrode derived from wood@ZIF-67 for supercapacitor applications. Chem. Eng. J. 2023, 454, 140410.

[31]

Li, Z. X.; Feng, T.; Zhou, P.; Zhang, R. B.; Liu, G. Growth of flower-like MnO2 on porous ZIF-67 for achieving enhanced supercapacitive properties. Energy Fuels 2022, 36, 14490–14499.

[32]

Chen, F. Z.; Xu, J.; Wang, S. Y.; Lv, Y. H.; Li, Y.; Chen, X.; Xia, A. L.; Li, Y. T.; Wu, J. X.; Ma, L. B. Phosphorus/phosphide-based materials for alkali metal-ion batteries. Adv. Sci. 2022, 9, 2200740.

[33]

Wang, J. M.; Liu, Z.; Zheng, Y. W.; Cui, L.; Yang, W. R.; Liu, J. Q. Recent advances in cobalt phosphide based materials for energy-related applications. J. Mater. Chem. A 2017, 5, 22913–22932.

[34]

Wang, X.; Kim, H. M.; Xiao, Y.; Sun, Y. K. Nanostructured metal phosphide-based materials for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 14915–14931.

[35]

Wang, C.; Sui, G.; Guo, D. X.; Li, J. L.; Zhang, L.; Li, S. B.; Xin, J. J.; Chai, D. F.; Guo, W. X. Structure-designed synthesis of hollow/porous cobalt sulfide/phosphide based materials for optimizing supercapacitor storage properties and hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 599, 577–585.

[36]

Zhang, J.; You, C. Y.; Lin, H. Z.; Wang, J. Electrochemical kinetic modulators in lithium-sulfur batteries: From defect-rich catalysts to single atomic catalysts. Energy Environ. Mater. 2022, 5, 731–750.

[37]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[38]

Li, J. S.; Zhang, S.; Sha, J. Q.; Wang, H.; Liu, M. Z.; Kong, L. X.; Liu, G. D. Confined molybdenum phosphide in P-doped porous carbon as efficient electrocatalysts for hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 17140–17146.

[39]

Hong, W.; Kitta, M.; Xu, Q. Bimetallic MOF-derived FeCo-P/C nanocomposites as efficient catalysts for oxygen evolution reaction. Small Methods 2018, 2, 1800214.

[40]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[41]

Zhai, T.; Wan, L. M.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q. Y.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167.

[42]

Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

[43]

Gao, X.; DelaCruz, S.; Zhu, C. H.; Cheng, S. Y.; Gardner, D.; Xie, Y. H.; Carraro, C.; Maboudian, R. Surface functionalization of carbon cloth with cobalt-porphyrin-based metal organic framework for enhanced electrochemical sensing. Carbon 2019, 148, 64–71.

[44]

Patil, S. J.; Chodankar, N. R.; Hwang, S. K.; Shinde, P. A.; Seeta Rama Raju, G.; Shanmugam Ranjith, K.; Huh, Y. S.; Han, Y. K. Co-metal-organic framework derived CoSe2@MoSe2 core−shell structure on carbon cloth as an efficient bifunctional catalyst for overall water splitting. Chem. Eng. J. 2022, 429, 132379.

[45]

Yang, Z. Z.; Zhou, Z. L.; Li, C. W.; Ma, P. K.; Wang, C.; Wang, H. Y. ZnCo2O4 nanorods coated with annealed polypyrrole/poly(vinyl alcohol) composites as anode materials for lithium-ion batteries. ACS Appl. Nano Mater. 2021, 4, 4496–4503.

[46]

Ge, X. L.; Li, Z. Q.; Wang, C. X.; Yin, L. W. Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 26633–26642.

[47]

Maity, D.; Karmakar, K.; Pal, D.; Saha, S.; Khan, G. G.; Mandal, K. One-dimensional p-ZnCo2O4/n-ZnO nanoheterojunction photoanode enabling photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 11599–11608.

[48]

Moon, I. K.; Yoon, S.; Ki, B.; Choi, K.; Oh, J. Remarkable enhancement of electrochemical performance by the oxygen vacancy and nitrogen doping in ZnCo2O4 nanowire arrays. ACS Appl. Energy Mater. 2018, 1, 4804–4813.

[49]

Gao, G. X.; Wu, H. B.; Dong, B. T.; Ding, S. J.; Lou, X. W. D. Growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties. Adv. Sci. 2015, 2, 1400014.

[50]

Gao, J. N.; Jiang, B.; Ni, C. C.; Qi, Y. F.; Bi, X. J. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 2020, 382, 123034.

[51]

Hao, Y. W.; Du, G. H.; Fan, Y.; Jia, L. N.; Han, D.; Zhao, W. Q.; Su, Q. M.; Ding, S. K.; Xu, B. S. Mo/P dual-doped co/oxygen-deficient Co3O4 core–shell nanorods supported on Ni foam for electrochemical overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 55263–55271.

[52]

Wang, D. R.; Deng, Y. P.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Hu, Y. F.; Shakouri, M.; Wang, X.; Chen, Z. W. Defect engineering on three-dimensionally ordered macroporous phosphorus doped Co3O4−δ microspheres as an efficient bifunctional electrocatalyst for Zn-air batteries. Energy Storage Mater. 2021, 41, 427–435.

[53]

Gopi, C. V. V. M.; Vinodh, R.; Sambasivam, S.; Obaidat, I. M.; Singh, S.; Kim, H. J. Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors. Chem. Eng. J. 2020, 381, 122640.

[54]

Jia, H.; Wang, J.; Fu, W.; Hu, J.; Liu, Y. In-situ MOFs-derived hollow Co9S8 polyhedron welding on the top of MnCo2S4 nanoneedles for high performance hybrid supercapacitors. Chem. Eng. J. 2020, 391, 123541.

[55]

Yang, Q. J.; Wang, Q. S.; Long, Y.; Wang, F.; Wu, L. L.; Pan, J.; Han, J.; Lei, Y.; Shi, W. D.; Song, S. Y. In situ formation of Co9S8 quantum dots in MOF-derived ternary metal layered double hydroxide nanoarrays for high-performance hybrid supercapacitors. Adv. Energy Mater. 2020, 10, 1903193.

[56]

Lyu, L.; Seong, K. D.; Kim, J. M.; Zhang, W.; Jin, X. Z.; Kim, D. K.; Jeon, Y.; Kang, J.; Piao, Y. CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 2019, 11, 88.

[57]

Li, J. E.; Wang, Y. W.; Xu, W. N.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X. Y.; Zhang, C. L.; Gu, X.; Hu, C. G. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379–387.

[58]

Liu, S. D.; Kang, L.; Zhang, J.; Jung, E.; Lee, S.; Jun, S. C. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Mater. 2020, 32, 167–177.

[59]

Zhang, Y.; Yuan, X. M.; Lu, W. B.; Yan, Y. S.; Zhu, J. W.; Chou, T. W. MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chem. Eng. J. 2019, 368, 525–532.

[60]

Yan, B.; Zheng, J. J.; Feng, L.; Du, C.; Jian, S. J.; Yang, W. S.; Wu, Y. A.; Jiang, S. H.; He, S. J.; Chen, W. Wood-derived biochar as thick electrodes for high-rate performance supercapacitors. Biochar 2022, 4, 50.

[61]

Wang, F.; Cheong, J. Y.; He, Q.; Duan, G. G.; He, S. J.; Zhang, L.; Zhao, Y.; Kim, I. D.; Jiang, S. H. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chem. Eng. J. 2021, 414, 128767.

[62]

Gao, M. Y.; Li, Y. T.; Yang, J. H.; Liu, Y. X.; Liu, Y.; Zhang, X. X.; Wu, S. H.; Cai, K. F. Nickel-cobalt (oxy)hydroxide battery-type supercapacitor electrode with high mass loading. Chem. Eng. J. 2022, 429, 132423.

[63]

Wang, H. Y.; Xu, C. M.; Chen, Y. Q.; Wang, Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Storage Mater. 2017, 8, 127–133.

[64]

Xu, Z. H.; Li, X. L.; Sun, S. S.; Wang, X. H.; Zhang, Z. H.; Li, H. Y.; Yin, S. G. High mass loading NiCoAl layered double hydroxides with interlayer spacing and interface regulation for high-capacity and long-life supercapacitors. J. Power Sources 2022, 546, 231982.

[65]

Sun, C.; Guo, Z. G.; Zhou, M.; Li, X. Y.; Cai, Z. S.; Ge, F. Y. Heteroatoms-doped porous carbon electrodes with three-dimensional self-supporting structure derived from cotton fabric for high-performance wearable supercapacitors. J. Power Sources 2021, 482, 228934.

Nano Research
Pages 10890-10898
Cite this article:
Liu Y-L, Wang L, Zeng Q, et al. A homologous strategy to parallelly construct doped MOFs-derived electrodes for flexible solid-state hybrid supercapacitors. Nano Research, 2023, 16(8): 10890-10898. https://doi.org/10.1007/s12274-023-5753-4
Topics:

1003

Views

7

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 23 March 2023
Revised: 15 April 2023
Accepted: 17 April 2023
Published: 19 May 2023
© Tsinghua University Press 2023
Return