AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging

Yupiao Wu1Shuo-En Wu2Jinjin Hei1Longhui Zeng2( )Pei Lin1Zhifeng Shi1Qingming Chen3Xinjian Li1Xuechao Yu4( )Di Wu1( )
School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
School of Microelectronics Science and Technology, Sun Yat-Sen University, Zhuhai 519082, China
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Show Author Information

Graphical Abstract

A large-area two-dimensional (2D) molybdenum diselenide (MoSe2) layers over 3.5-inch are synthesized for fabrication of n-MoSe2/p-Si van der Waals (vdW) heterojunction device array, which shows broadband self-driven photodetection and imaging performance.

Abstract

As one of the most promising materials for two-dimensional transition metal chalcogenides (2D TMDs), molybdenum diselenide (MoSe2) has great potential in photodetectors due to its excellent properties like tunable bandgap, high carrier mobility, and excellent air stability. Although 2D MoSe2-based photodetectors have been reported to exhibit admired performance, the large-area 2D MoSe2 layers are difficult to be achieved via conventional synthesis methods, which severely impedes its future applications. Here, we present the controllable growth of large-area 2D MoSe2 layers over 3.5-inch with excellent homogeneity by a simple post-selenization route. Further, a high-quality n-MoSe2/p-Si van der Waals (vdW) heterojunction device is in-situ fabricated by directly growing 2D n-MoSe2 layers on the patterned p-Si substrate, which shows a self-driven broadband photoresponse ranging from ultraviolet to mid-wave infrared with an impressive responsivity of 720.5 mA·W−1, a high specific detectivity of 1013 Jones, and a fast response time to follow nanosecond pulsed optical signal. In addition, thanks to the inch-level 2D MoSe2 layers, a 4 × 4 integrated heterojunction device array is achieved, which has demonstrated good uniformity and satisfying imaging capability. The large-area 2D MoSe2 layer and its heterojunction device array have great promise for high-performance photodetection and imaging applications in integrated optoelectronic systems.

Electronic Supplementary Material

Download File(s)
12274_2023_5759_MOESM1_ESM.pdf (2.9 MB)

References

[1]

Wang, H. Y.; Li, Z. X.; Li, D. Y.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106.

[2]

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

[3]

Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light: Sci. Appl. 2021, 10, 123.

[4]

Wu, D.; Xu, M. M.; Zeng, L. H.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Shan, C. X.; Jie, J. S. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555.

[5]

Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

[6]

Zhang, Z. F.; Lin, C. N.; Yang, X.; Tian, Y. Z.; Gao, C. J.; Li, K. Y.; Zang, J. H.; Yang, X. G.; Dong, L.; Shan, C. X. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 2021, 173, 427–432.

[7]

Zhuo, R. R.; Zeng, L. H.; Yuan, H. Y.; Wu, D.; Wang, Y. G.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183–189.

[8]

Tian, W.; Sun, H. X.; Chen, L.; Wangyang, P. H.; Chen, X. R.; Xiong, J.; Li, L. Low-dimensional nanomaterial/Si heterostructure-based photodetectors. InfoMat 2019, 1, 140–163.

[9]

Jiao, H. X.; Wang, X. D.; Chen, Y.; Guo, S. F.; Wu, S. Q.; Song, C. Y.; Huang, S. Y.; Huang, X. N.; Tai, X. C.; Lin, T. et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 2022, 8, eabn1811.

[10]

Yang, K. X.; Ni, B.; Ge, H. L.; Zhang, L. L.; Yang, L. S.; Ni, H. B.; Tai, G. S.; Chang, J. H. A high-performance quantum well infrared photodetector based on semiconductor-metal periodic microstructure. Opt. Quant. Electron. 2021, 53, 160.

[11]

Zhu, H.; Chen, Y.; Zhao, Y.; Li, X.; Teng, Y.; Hao, X. J.; Liu, J. F.; Zhu, H.; Wu, Q. H.; Huang, Y. Growth and characterization of InGaAs/InAsSb superlattices by metal-organic chemical vapor deposition for mid-wavelength infrared photodetectors. Superlattices Microstruct. 2020, 146, 106655.

[12]

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

[13]

Yao, J. D.; Yang, G. W. 2D material broadband photodetectors. Nanoscale 2020, 12, 454–476.

[14]

Zhong, F.; Wang, H.; Wang, Z.; Wang, Y.; He, T.; Wu, P. S.; Peng, M.; Wang, H. L.; Xu, T. F.; Wang, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Res. 2020, 14, 1840–1862.

[15]

Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.

[16]

Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554.

[17]

Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet–visible to infrared. Small 2017, 13, 1700894.

[18]

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

[19]

Lu, X.; Utama, M. I.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419–2425.

[20]

Geng, X. S.; Yu, Y. Q.; Zhou, X. L.; Wang, C. D.; Xu, K. W.; Zhang, Y.; Wu, C. Y.; Wang, L.; Jiang, Y.; Yang, Q. Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Nano Res. 2016, 9, 2641–2651.

[21]

Dhyani, V.; Das, M.; Uddin, W.; Muduli, P. K.; Das, S. Self-powered room temperature broadband infrared photodetector based on MoSe2/germanium heterojunction with 35 A/W responsivity at 1550 nm. Appl. Phys. Lett. 2019, 114, 121101.

[22]

Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.

[23]

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

[24]

Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

[25]

Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

[26]

Peng, H.; Wei, C. D.; Wang, K.; Meng, T. Y.; Ma, G. F.; Lei, Z. Q.; Gong, X. Ni0.85Se@MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 17067–17075.

[27]

Wu, D.; Tian, R.; Lin, P.; Shi, Z. F.; Chen, X.; Jia, M. C.; Tian, Y. T.; Li, X. J.; Zeng, L. H.; Jie, J. S. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging. Nano Energy 2022, 104, 107972.

[28]

Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

[29]

Ning, J.; Zhou, Y.; Zhang, J. C.; Lu, W.; Dong, J. G.; Yan, C. C.; Wang, D.; Shen, X.; Feng, X.; Zhou, H. et al. Self-driven photodetector based on a GaSe/MoSe2 selenide van der Waals heterojunction with the hybrid contact. Appl. Phys. Lett. 2020, 117, 163104.

[30]

Liu, B. Y.; Zhao, C.; Chen, X. Q.; Zhang, L. R.; Li, Y. F.; Yan, H.; Zhang, Y. Z. Self-powered and fast photodetector based on graphene/MoSe2/Au heterojunction. Superlattices Microstruct. 2019, 130, 87–92.

[31]

Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D. D.; Li, J. J.; Gu, C. Z.; Meng, X. M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949–8955.

[32]

John, J. W.; Dhyani, V.; Maity, S.; Mukherjee, S.; Ray, S. K.; Kumar, V.; Das, S. Broadband infrared photodetector based on nanostructured MoSe2-Si heterojunction extended up to 2.5 μm spectral range. Nanotechnology 2020, 31, 455208.

[33]

Patel, A. B.; Chauhan, P.; Patel, K.; Sumesh, C. K.; Narayan, S.; Patel, K. D.; Solanki, G. K.; Pathak, V. M.; Jha, P. K.; Patel, V. Solution-processed uniform MoSe2-WSe2 heterojunction thin film on silicon substrate for superior and tunable photodetection. ACS Sustainable Chem. Eng. 2020, 8, 4809–4817.

[34]

Yang, T.; Li, X.; Wang, L. M.; Liu, Y. M.; Chen, K. J.; Yang, X.; Liao, L.; Dong, L.; Shan, C. X. Broadband photodetection of 2D Bi2O2Se-MoSe2 heterostructure. J. Mater. Sci. 2019, 54, 14742–14751.

[35]

Wazir, N.; Liu, R. B.; Ding, C. J.; Wang, X. S.; Ye, X.; Xie, L. L.; Lu, T. Q.; Wei, L.; Zou, B. S. Vertically stacked MoSe2/MoO2 nanolayered photodetectors with tunable photoresponses. ACS Appl. Nano Mater. 2020, 3, 7543–7553.

[36]

Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

[37]

Zhao, B.; Wang, F.; Chen, H. Y.; Zheng, L. X.; Su, L. X.; Zhao, D. X.; Fang, X. S. An ultrahigh responsivity (9.7 mA·W−1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater. 2017, 27, 1700264.

[38]

Henck, H.; Pierucci, D.; Chaste, J.; Naylor, C. H.; Avila, J.; Balan, A.; Silly, M. G.; Asensio, M. C.; Sirotti, F.; Johnson, A. T. C. et al. Electrolytic phototransistor based on graphene-MoS2 van der Waals p–n heterojunction with tunable photoresponse. Appl. Phys. Lett. 2016, 109, 113103.

[39]

Ghamgosar, P.; Rigoni, F.; Kohan, M. G.; You, S. J.; Morales, E. A.; Mazzaro, R.; Morandi, V.; Almqvist, N.; Concina, I.; Vomiero, A. Self-powered photodetectors based on core–shell ZnO-Co3O4 nanowire heterojunctions. ACS Appl. Mater. Interfaces 2019, 11, 23454–23462.

[40]

Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 2017, 8, 1906.

[41]

Zhang, L.; Han, X. N.; Wen, P. T.; Zhang, S. H.; Zheng, Z. Q.; Li, J. B.; Gao, W. Weyl-semimetal TaIrTe4/Si nanostructures for self-powered Schottky photodetectors. ACS Appl. Nano Mater. 2022, 5, 6523–6531.

[42]

Duan, L.; He, F. N.; Tian, Y.; Sun, B.; Fan, J. B.; Yu, X. C.; Ni, L.; Zhang, Y.; Chen, Y. N.; Zhang, W. X. Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO: Al nanorod-array-film structure with stable Schottky barrier. ACS Appl. Mater. Interfaces 2017, 9, 8161–8168.

[43]

Wang, F.; Yin, L.; Wang, Z. X.; Xu, K.; Wang, F. M.; Shifa, T. A.; Huang, Y.; Jiang, C.; He, J. Configuration-dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2. Adv. Funct. Mater. 2016, 26, 5499–5506.

[44]

Lai, B. K.; Shen, H. L.; Zhao, Q. C.; Li, Y. F.; Fan, W. T. Self-driven heterostructure photodetector of sputtered CZTS film on c-Si with an inverted pyramid structure. Ceram. Int. 2022, 48, 2105–2111.

[45]

Xiang, D.; Han, C.; Hu, Z. H.; Lei, B.; Liu, Y. Y.; Wang, L.; Hu, W. P.; Chen, W. Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector. Small 2015, 11, 4829–4836.

[46]

Mao, J.; Yu, Y. Q.; Wang, L.; Zhang, X. J.; Wang, Y. M.; Shao, Z. B.; Jie, J. S. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.

[47]

Wang, Y. Y.; Wu, Y. D.; Peng, W.; Song, Y. H.; Wang, B.; Wu, C. Y.; Lu, Y. Self-assembled KCu7S4 nanowire monolayers for self-powered near-infrared photodetectors. Nanoscale 2018, 10, 18502–18509.

[48]

Boruah, B. D.; Misra, A. Energy-efficient hydrogenated zinc oxide nanoflakes for high-performance self-powered ultraviolet photodetector. ACS Appl. Mater. Interfaces 2016, 8, 18182–18188.

[49]

Luo, L. B.; Hu, H.; Wang, X. H.; Lu, R.; Zou, Y. F.; Yu, Y. Q.; Liang, F. X. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C 2015, 3, 4723–4728.

[50]

Zhang, T.; Ling, C. C.; Wang, X. M.; Feng, B. X.; Cao, M.; Xue, X.; Xue, Q. Z.; Zhang, J. Q.; Zhu, L.; Wang, C. K. et al. Six-arm stellat dendritic-PbS flexible infrared photodetector for intelligent healthcare monitoring. Adv. Mater. Technol. 2022, 7, 2200250.

[51]

Jin, B.; Zuo, N.; Hu, Z. Y.; Cui, W. J.; Wang, R. Y.; Van Tendeloo, G.; Zhou, X.; Zhai, T. Y. Excellent excitonic photovoltaic effect in 2D CsPbBr3/CdS heterostructures. Adv. Funct. Mater. 2020, 30, 2006166.

[52]

Sahatiya, P.; Reddy K, C. S.; Badhulika, S. Discretely distributed 1D V2O5 nanowires over 2D MoS2 nanoflakes for an enhanced broadband flexible photodetector covering the ultraviolet to near infrared region. J. Mater. Chem. C 2017, 5, 12728–12736.

[53]

Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729.

[54]

Zeng, L. H.; Han, W.; Wu, S. E.; Wu, D.; Lau, S. P.; Tsang, Y. H. Graphene/PtSe2/pyramid Si van der Waals Schottky junction for room-temperature broadband infrared light detection. IEEE Trans. Electron Devices 2022, 69, 6212–6216.

[55]

Zeng, L. H.; Lin, S. H.; Lou, Z. H.; Yuan, H. Y.; Long, H.; Li, Y. Y.; Lu, W.; Lau, S. P.; Wu, D.; Tsang, Y. H. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018, 10, 352–362.

[56]

Wu, D.; Guo, C. G.; Zeng, L. H.; Ren, X. Y.; Shi, Z. F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C. X. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light: Sci. Appl. 2023, 12, 5.

[57]

Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572.

Nano Research
Pages 11422-11429
Cite this article:
Wu Y, Wu S-E, Hei J, et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging. Nano Research, 2023, 16(8): 11422-11429. https://doi.org/10.1007/s12274-023-5759-y
Topics:

2364

Views

16

Crossref

14

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 08 March 2023
Revised: 11 April 2023
Accepted: 19 April 2023
Published: 08 June 2023
© Tsinghua University Press 2023
Return