AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bifunctional fluoropyridinium-based cationic electrolyte additive for dendrite-free Li metal anode

Kunyao PengPei TangQianqian YaoQingyun DouXingbin Yan( )
Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Show Author Information

Graphical Abstract

An electrolyte additive with N-fluoropyridinium cation is proposed, which can not only participate in forming solid electrolyte interphase (SEI) protective layer on Li surface, but also act as a cationic repellent to realize electrostatic repulsion mechanism and inhibit Li dendrite’s growth.

Abstract

Although lithium metal has become a promising anode material for high-energy batteries owing to its high specific capacity and the lowest reduction potential, the continuous side reactions with electrolyte as well as the safety problem caused by Li dendrite growth restrict Li anode’s practical application. Herein, we demonstrate that N-fluoropyridinium (ArF+) bis(trifluoromethane)sulfonimide (TFSI) as an electrolyte additive can protect the lithium metal by both solid electrolyte interphase (SEI) protection and electrostatic repulsion mechanisms. The ArF+ cations not only participate in forming F, N-containing SEI protective layer on Li surface, but also act as a cationic repellent during Li deposition to inhibit Li dendrite growth. As a result, the cycle performance of Li symmetric cells and Li||LiFePO4 full cells were significantly improved by using ArFTFSI-added electrolyte. This study provides an electrolyte additive strategy for Li anode realizing SEI protection and electrostatic repulsion simultaneously.

Electronic Supplementary Material

Download File(s)
12274_2023_5761_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C. M.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives. Angew. Chem., Int. Ed. 2018, 57, 15002–15027.

[2]

Ko, S.; Obukata, T.; Shimada, T.; Takenaka, N.; Nakayama, M.; Yamada, A.; Yamada, Y. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 2022, 7, 1217–1224.

[3]
Ding, J. F.; Zhang, Y. T.; Xu, R.; Zhang, R.; Xiao, Y.; Zhang, S.; Bi, C. X.; Tang, C.; Xiang, R.; Park, H. S. et al. Review on lithium metal anodes towards high energy density batteries. Green Energy Environ., in press, https://doi.org.10.1016/j.gee.2022.08.002.
[4]

Ling, C.; Banerjee, D.; Matsui, M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology. Electrochim. Acta 2012, 76, 270–274.

[5]

Jana, A.; Woo, S. I.; Vikrant, K. S. N.; García, R. E. Electrochemomechanics of lithium dendrite growth. Energy Environ. Sci. 2019, 12, 3595–3607.

[6]

Shen, X.; Zhang, R.; Chen, X.; Cheng, X. B.; Li, X. Y.; Zhang, Q. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength. Adv. Energy Mater. 2020, 10, 1903645.

[7]

Zhang, X.; Sun, C. W. Recent advances in dendrite-free lithium metal anodes for high-performance batteries. Phys. Chem. Chem. Phys. 2022, 24, 19996–20011.

[8]

Wang, H. S.; Cao, X.; Gu, H. K.; Liu, Y. Y.; Li, Y. B.; Zhang, Z. W.; Huang, W.; Wang, H. X.; Wang, J. Y.; Xu, W. et al. Improving lithium metal composite anodes with seeding and pillaring effects of silicon nanoparticles. ACS Nano 2020, 14, 4601–4608.

[9]

Abdul Ahad, S.; Bhattacharya, S.; Kilian, S.; Ottaviani, M.; Ryan, K. M.; Kennedy, T.; Thompson, D.; Geaney, H. Lithiophilic nanowire guided Li deposition in Li metal batteries. Small 2022, 19, 2205142.

[10]
Wang, G. Y.; Song, C.; Huang, J. Q.; Park, H. S. Recent advances in carbon-based current collectors/hosts for alkali metal anodes. Energy Environ. Mater. , in press, https://doi.org.10.1002/eem2.12460.
[11]

Li, S. M.; Huang, J. L.; Cui, Y.; Liu, S. H.; Chen, Z. R.; Huang, W.; Li, C. F.; Liu, R. L.; Fu, R. W.; Wu, D. C. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 2022, 17, 613–621.

[12]
Zheng, S.; Zhang, H. Y.; Fan, J. C.; Xu, Q. J.; Min, Y. L. In situ construction of aramid nanofiber membrane on Li anode as artificial SEI layer achieving ultra-high stability. Small 2021, 17, e2102347.
[13]

Luo, Y.; Li, T. Y.; Zhang, H. Z.; Liu, W.; Zhang, X. B.; Yan, J. W.; Zhang, H. M.; Li, X. F. Endogenous symbiotic Li3N/cellulose skin to extend the cycle life of lithium anode. Angew. Chem., Int. Ed. 2021, 60, 11718–11724.

[14]

Wang, T. Y.; Zhang, X. L.; Yuan, N.; Sun, C. W. Molecular design of a metal-organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries. Chem. Eng. J. 2023, 451, 138819.

[15]

Zhang, Y. Z.; Sun, C. W. Composite lithium protective layer formed in situ for stable lithium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 12099–12105.

[16]

Jin, S.; Ye, Y. D.; Niu, Y. J.; Xu, Y. S.; Jin, H. C.; Wang, J. X.; Sun, Z. W.; Cao, A. M.; Wu, X. J.; Luo, Y. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 2020, 142, 8818–8826.

[17]

Peng, K. Y.; Chen, Z. Y.; Zhao, X. Y.; Shi, K. Y.; Zhu, C. B.; Yan, X. B. Dual-conductive Li alloy composite anode constructed by a synergetic conversion-alloying reaction with LiMgPO4. Chem. Eng. J. 2022, 439, 135705.

[18]

Liu, S.; Deng, L. J.; Guo, W. Q.; Zhang, C. Y.; Liu, X. J.; Luo, J. Y. Bulk nanostructured materials design for fracture-resistant lithium metal anodes. Adv. Mater. 2019, 31, 1807585.

[19]

Aurbach, D.; Markevich, E.; Salitra, G. High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents. J. Am. Chem. Soc. 2021, 143, 21161–21176.

[20]

Ding, J. F.; Xu, R.; Ma, X. X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Huang, J. Q. Quantification of the dynamic interface evolution in high-efficiency working Li-metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202115602.

[21]

Shi, Q. W.; Zhong, Y. R.; Wu, M.; Wang, H. Z.; Wang, H. L. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. USA 2018, 115, 5676–5680.

[22]

Liu, S. F.; Xia, J. L.; Zhang, W. R.; Wan, H. L.; Zhang, J. X.; Xu, J. J.; Rao, J. C.; Deng, T.; Hou, S.; Nan, B. et al. Salt-in-salt reinforced carbonate electrolyte for Li metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202210522.

[23]

Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

[24]

Xie, J.; Sun, S. Y.; Chen, X.; Hou, L. P.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Zhang, X. Q.; Zhang, Q. Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202204776.

[25]

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

[26]

Yoo, D. J.; Kim, K. J.; Choi, J. W. The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes. Adv. Energy Mater. 2018, 8, 1702744.

[27]

Jang, J.; Shin, J. S.; Ko, S.; Park, H.; Song, W. J.; Park, C. B.; Kang, J. Self-assembled protective layer by symmetric ionic liquid for long-cycling lithium-metal batteries. Adv. Energy Mater. 2022, 12, 2103955.

[28]

Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem., Int. Ed. 2018, 57, 5301–5305.

[29]

Bayaguud, A.; Luo, X.; Fu, Y. P.; Zhu, C. B. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020, 5, 3012–3020.

[30]

Wang, M. Z.; Tang, M.; Chen, S. L.; Ci, H. N.; Wang, K. X.; Shi, L. R.; Lin, L.; Ren, H. Y.; Shan, J. Y.; Gao, P. et al. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery. Adv. Mater. 2017, 29, 1703882.

[31]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16 Rev. C. 01; Gaussian Inc. : Wallingford, CT, USA, 2016.
[32]

Kim, K.; Jordan, K. D. Comparison of density functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem. 1994, 98, 10089–10094.

[33]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[34]

Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Von Ragué Schleyer, P. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J. Comput. Chem. 1983, 4, 294–301.

[35]

Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654.

Nano Research
Pages 9530-9537
Cite this article:
Peng K, Tang P, Yao Q, et al. Bifunctional fluoropyridinium-based cationic electrolyte additive for dendrite-free Li metal anode. Nano Research, 2023, 16(7): 9530-9537. https://doi.org/10.1007/s12274-023-5761-4
Topics:

726

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 14 March 2023
Revised: 10 April 2023
Accepted: 19 April 2023
Published: 06 June 2023
© Tsinghua University Press 2023
Return