AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pd@Ir-LOD multienzyme utilizing endogenous lactate consumption cooperates with photothermal for tumor therapy

Zichen Ye1,§Yun Li2,§Jingchao Li2Xinyan Hu1Jinyang Zheng3Gongxin Zhang1Sijin Xiang1Tianbao Zhu1Zhide Guo2( )Xiaolan Chen1( )
State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China
The High Educational Key Laboratory for Biomedical Engineering & Key Laboratory of Fire Retardant Materials of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361102, China

§ Zichen Ye and Yun Li contributed equally to this work.

Show Author Information

Graphical Abstract

The endogenous lactic acid (LA) consumption triggered multienzyme cascade reaction combines with photothermal therapy (PTT) for tumor therapy. The decreasing LA concentration, accumulation of high-toxic reactive oxygen species (ROS), the depletion of glutathione (GSH) together with the higher intratumoral temperature potently improve in vivo antitumor therapy.

Abstract

Lactic acid (LA) plays a major role in the occurrence, development, and spread of cancer. Enlightened by its high accumulation in tumor site, a novel lactate oxidase (LOD) conjugated two-dimensional Pd@Ir nanoplatform (Pd@Ir-LOD, PIL) was fabricated to combine cascade reaction with photothermal for tumor therapy. In detail, the overexpressed LA in tumor microenvironment (TME) was a key factor to activate the PIL-based cascade reaction: (1) Plenty of H2O2 could be generated from LA by the catalysis of LOD with O2; (2) potent ·OH was produced from H2O2 due to the peroxidase (POD)-like activity of PIL; (3) meantime, PIL’s catalase (CAT)-like activity could decompose part H2O2 into O2 to achieve the purpose of LA cyclic oxidization. Moreover, the reduced glutathione (GSH) scavenging capability of PIL might protect the produced reactive oxygen species (ROS) from being cleared to further improve the cascade therapeutic effect. More importantly, PIL had excellent photothermal conversion efficiency (37.35%) and manifested a surprising temperature rising effect in tumor. Taken together, the decreasing LA concentration, accumulation of high-toxic ROS, the depletion of GSH together with the higher intra-tumoral temperature potently enhanced in vivo antitumor therapy. Therefore, a promising therapeutic tactic based on PIL integrating endogenous LA consumption, chemodynamic therapy (CDT), and photothermal therapy (PTT) has been put forward.

Electronic Supplementary Material

Download File(s)
12274_2023_5764_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Wei, J. P.; Li, J. C.; Sun, D.; Li, Q.; Ma, J. Y.; Chen, X. L.; Zhu, X.; Zheng, N. F. A novel theranostic nanoplatform based on Pd@Pt-PEG-Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv. Funct. Mater. 2018, 28, 1706310.

[2]

Yao, C.; Wang, W. X.; Wang, P. Y.; Zhao, M. Y.; Li, X. M.; Zhang, F. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2- responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018, 30, 1704833.

[3]

Lin, S. Y.; Yang, M.; Chen, J. J.; Feng, W.; Chen, Y.; Zhu, Y. F. Two-dimensional FePS3 nanosheets as an integrative sonosensitizer/nanocatalyst for efficient nanodynamic tumor therapy. Small 2023, 19, 2204992.

[4]

Liu, X. L.; Pan, Y. C.; Yang, J. J.; Gao, Y. F.; Huang, T.; Luan, X. W.; Wang, Y. Z.; Song, Y. J. Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors. Nano Res. 2020, 13, 653–660.

[5]

Xiang, S. J.; Fan, Z. X.; Ye, Z. C.; Zhu, T. B.; Shi, D.; Ye, S. F.; Hou, Z. Q.; Chen, X. L. Endogenous Fe2+-activated ROS nanoamplifier for esterase-responsive and photoacoustic imaging-monitored therapeutic improvement. Nano Res. 2022, 15, 907–918.

[6]

Feng, L. S.; Dou, C. R.; Xia, Y. G.; Li, B. H.; Zhao, M. Y.; El-Toni, A. M.; Atta, N. F.; Zheng, Y. Y.; Cai, X. J.; Wang, Y. et al. Enhancement of nanozyme permeation by endovascular interventional treatment to prevent vascular restenosis via macrophage polarization modulation. Adv. Funct. Mater. 2020, 30, 2006581.

[7]

Liu, J. J.; Chen, Q.; Feng, L. Z.; Liu, Z. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 2018, 21, 55–73.

[8]

Jiang, B.; Liang, M. M. Advances in single-atom nanozymes research. Chin. J. Chem. 2021, 39, 174–180.

[9]

García-Cañaveras, J. C.; Chen, L.; Rabinowitz, J. D. The tumor metabolic microenvironment: Lessons from lactate. Cancer Res. 2019, 79, 3155–3162.

[10]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[11]

Liang, C.; Xu, L. G.; Song, G. S.; Liu, Z. Emerging nanomedicine approaches fighting tumor metastasis: Animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem. Soc. Rev. 2016, 45, 6250–6269.

[12]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[13]

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

[14]

Tian, Z. M.; Yang, K. L.; Yao, T. Z.; Li, X. H.; Ma, Y. Y.; Qu, C. Y.; Qu, X. L.; Xu, Y. J.; Guo, Y. H.; Qu, Y. Q. Catalytically selective chemotherapy from tumor-metabolic generated lactic acid. Small 2019, 15, 1903746.

[15]

Zhou, X.; Wang, Z. Y.; Chan, Y. K.; Yang, Y. M.; Jiao, Z.; Li, L. M.; Li, J. Y.; Liang, K. N.; Deng, Y. Infection micromilieu-activated nanocatalytic membrane for orchestrating rapid sterilization and stalled chronic wound regeneration. Adv. Funct. Mater. 2022, 32, 2109469.

[16]

Xiao, Y. P.; Chen, P. H.; Lei, S.; Bai, F.; Fu, L. H.; Lin, J.; Huang, P. Biocatalytic depletion of tumorigenic energy sources driven by cascade reactions for efficient antitumor therapy. Angew. Chem., Int. Ed. 2022, 61, e202204584.

[17]

Zhou, X.; Zhao, W.; Wang, M. X.; Zhang, S.; Li, Y. H.; Hu, W. X.; Ren, L.; Luo, S. L.; Chen, Z. W. Dual-modal therapeutic role of the lactate oxidase-embedded hierarchical porous zeolitic imidazolate framework as a nanocatalyst for effective tumor suppression. ACS Appl. Mater. Interfaces 2020, 12, 32278–32288.

[18]

Shen, J. L.; Chen, A.; Cai, Z. W.; Chen, Z. J.; Cao, R. C.; Liu, Z. C.; Li, Y. L.; Hao, J. Exhausted local lactate accumulation via injectable nanozyme-functionalized hydrogel microsphere for inflammation relief and tissue regeneration. Bioact. Mater. 2022, 12, 153–168.

[19]

San-Millán, I.; Brooks, G. A. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis 2017, 38, 119–133.

[20]

Ippolito, L.; Morandi, A.; Giannoni, E.; Chiarugi, P. Lactate: A metabolic driver in the tumour landscape. Trends. Biochem. Sci. 2019, 44, 153–166.

[21]

Warburg, O.; Posener, K.; Negelein, E. On the metabolism of carcinoma cells. Biochem. Z. 1924, 152, 309–344.

[22]

Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8, 519–530.

[23]

Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.

[24]

Vaupel, P.; Multhoff, G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2021, 599, 1745–1757.

[25]

Li, K.; Lin, C. C.; He, Y.; Lu, L.; Xu, K.; Tao, B.; Xia, Z. Z.; Zeng, R.; Mao, Y. L.; Luo, Z. et al. Engineering of cascade-responsive nanoplatform to inhibit lactate efflux for enhanced tumor chemo-immunotherapy. ACS Nano 2020, 14, 14164–14180.

[26]

Walenta, S.; Schroeder, T.; Mueller-Klieser, W. Lactate in solid malignant tumors: Potential basis of a metabolic classification in clinical oncology. Curr. Med. Chem. 2004, 11, 2195–2204.

[27]

Holroyde, C. P.; Axelrod, R. S.; Skutches, C. L.; Haff, A. C.; Paul, P.; Reichard, G. A. Lactate metabolism in patients with metastatic colorectal cancer. Cancer Res. 1979, 39, 4900–4904.

[28]

Tian, F.; Wang, S. Y.; Shi, K. D.; Zhong, X. J.; Gu, Y. T.; Fan, Y. D.; Zhang, Y.; Yang, M. Dual-depletion of intratumoral lactate and ATP with radicals generation for cascade metabolic-chemodynamic therapy. Adv. Sci. 2021, 8, 2102595.

[29]

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

[30]

Ye, Z. C.; Fan, Y. Y.; Zhu, T. B.; Cao, D. X.; Hu, X. Y.; Xiang, S. J.; Li, J. C.; Guo, Z. D.; Chen, X. L.; Tan, K. et al. Preparation of two-dimensional Pd@Ir nanosheets and application in bacterial infection treatment by the generation of reactive oxygen species. ACS Appl. Mater. Interfaces 2022, 14, 23194–23205.

[31]

Wang, L.; Sun, P. X.; Yang, Y. Y.; Qiao, H. Z.; Tian, H. L.; Wu, D. P.; Yang, S. Y.; Yuan, Q. P.; Wang, J. S. Preparation of ZIF@ADH/NAD-MSN/LDH core shell nanocomposites for the enhancement of coenzyme catalyzed double enzyme cascade. Nanomaterials 2021, 11, 2171.

[32]

Qin, X.; Wu, C.; Niu, D. C.; Qin, L. M.; Wang, X.; Wang, Q. G.; Li, Y. S. Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy. Nat. Commun. 2021, 12, 5243.

[33]

Wang, H. H.; Cheng, L.; Ma, S.; Ding, L. M.; Zhang, W.; Xu, Z. B.; Li, D. D.; Gao, L. Z. Self-assembled multiple-enzyme composites for enhanced synergistic cancer starving-catalytic therapy. ACS Appl. Mater. Interfaces 2020, 12, 20191–20201.

[34]

Zhang, Y. Q.; Li, M. T.; Zhang, X. G.; Zhang, P.; Liu, Z. Y.; Feng, M.; Ren, G. L.; Liu, J. Tumor microenvironment-activated Nb2C quantum dots/lactate oxidase nanocatalyst mediates lactate consumption and macrophage repolarization for enhanced chemodynamic therapy. Colloids Surf. B: Biointerfaces 2023, 221, 113005.

[35]

Takigawa, I.; Shimizu, K. I.; Tsuda, K.; Takakusagi, S. Machine-learning prediction of the d-band center for metals and bimetals. RSC Adv. 2016, 6, 52587–52595.

[36]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[37]

Gao, F.; Tang, Y.; Liu, W. L.; Zou, M. Z.; Huang, C.; Liu, C. J.; Zhang, X. Z. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv. Mater. 2019, 31, 1904639.

[38]

Xiang, S. J.; Fan, Z. X.; Sun, D.; Zhu, T. B.; Ming, J.; Chen, X. L. Near-infrared light enhanced peroxidase-like activity of PEGylated palladium nanozyme for highly efficient biofilm eradication. J. Biomed. Nanotechnol. 2021, 17, 1131–1147.

[39]

Wei, C. F.; Liu, Y. A. N.; Zhu, X. F.; Chen, X.; Zhou, Y. H.; Yuan, G. L.; Gong, Y. C.; Liu, J. Iridium/ruthenium nanozyme reactors with cascade catalytic ability for synergistic oxidation therapy and starvation therapy in the treatment of breast cancer. Biomaterials 2020, 238, 119848.

[40]

Zhen, W. Y.; Liu, Y.; Zhang, M. C.; Hu, W. X.; Wang, W.; Jia, X. D.; Jiang, X. Multi-caged IrOx for facile preparation of “six-in-one” nanoagent for subcutaneous and lymphatic tumors inhibition against recurrence and metastasis. Adv. Funct. Mater. 2020, 30, 2002274.

[41]

Shen, J. C.; Karges, J.; Xiong, K.; Chen, Y.; Ji, L. N.; Chao, H. Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. Biomaterials 2021, 275, 120979.

[42]

Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

[43]

Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

Nano Research
Pages 270-281
Cite this article:
Ye Z, Li Y, Li J, et al. Pd@Ir-LOD multienzyme utilizing endogenous lactate consumption cooperates with photothermal for tumor therapy. Nano Research, 2024, 17(1): 270-281. https://doi.org/10.1007/s12274-023-5764-1
Topics:

886

Views

5

Crossref

5

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 10 February 2023
Revised: 18 April 2023
Accepted: 20 April 2023
Published: 23 June 2023
© Tsinghua University Press 2023
Return