Graphical Abstract

Dual atom catalysts (DACs), are promising electrocatalysts for oxygen reduction reaction (ORR) on account of the potential dual-atom active sites for the optimized adsorption of catalytic intermediates and the lower reaction energy barriers. Herein, spatial confinement strategy to fabricate DACs with well-defined Fe, Co dual-atom active site is proposed by implanting zeolitic imidazolate frameworks inside the pores of highly porous carbon nanospheres (Fe/Co-SAs-Nx-PCNSs). The atomically dispersed dual-atom active sites facilitate the adsorption/desorption of intermediates. Furthermore, the spatial confinement effect protects metal atoms aggregating. Benefiting from the rich accessible dual-atom active sites and boosted mass transport, we achieve remarkable ORR performance with half-wave potential up to 0.91 and 0.8 V (vs. reversible hydrogen electrode (RHE)), and long-term stability up to 10 h in both alkaline and acidic electrolytes. The remarkably enhanced ORR catalytic property of our as-developed DACs is in the rank of excellence for 1%. The as-developed rechargeable Zn-air battery (ZAB) with Fe/Co-SAs-Nx-PCNSs air cathode delivers ultrahigh power density of 216 mW·cm−2, outstanding specific capacity of 813 mAh·g−1, and promising cycling operation durability over 160 h. The flexible Zn-air battery also exhibits excellent specific capacity, cycling stability, and flexibility performance. This work opens up a new pathway for the multiscale design of efficient electrocatalysts with atomically dispersed multiple active sites.
Zong, L. B.; Fan, K. C.; Wu, W. C.; Cui, L. X.; Zhang, L. L.; Johannessen, B.; Qi, D. C.; Yin, H. J.; Wang, Y.; Liu, P. R. et al. Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2104864.
Chen, X.; Pu, J.; Hu, X. H.; An, L.; Jiang, J. J.; Li, Y. J. Confinement synthesis of bimetallic MOF-derived defect-rich nanofiber electrocatalysts for rechargeable Zn-air battery. Nano Res. 2022, 15, 9000–9009.
Haider, R.; Wen, Y. C.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Yuan, X. X.; Song, S. Q.; Zhang, J. J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187.
Zhang, Y. G.; Deng, Y. P.; Wang, J. Y.; Jiang, Y.; Cui, G. L.; Shui, L. L.; Yu, A. P.; Wang, X.; Chen, Z. W. Recent progress on flexible Zn-air batteries. Energy Storage Mater. 2021, 35, 538–549.
Zong, L. B.; Chen, X.; Liu, S. L.; Fan, K. C.; Dou, S. M.; Xu, J.; Zhao, X. X.; Zhang, W. J.; Zhang, Y. W.; Wu, W. C. et al. Ultrafine Fe/Fe3C decorated on Fe-Nx-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries. J. Energy Chem. 2021, 56, 72–79.
Zhao, Y. S.; Wan, J. W.; Yang, N. L.; Yu, R. B.; Wang, D. sp-Hybridized nitrogen doped graphdiyne for high-performance Zn-air batteries. Mater. Chem. Front. 2021, 5, 7987–7992.
Zhu, S. Y.; Yang, L. T.; Bai, J. S.; Chu, Y. Y.; Liu, J.; Jin, Z.; Liu, C. P.; Ge, J. J.; Xing, W. Ultra-stable Pt5La intermetallic compound towards highly efficient oxygen reduction reaction. Nano Res. 2023, 16, 2035–2040.
Dai, Y. W.; Yu, J.; Wang, J.; Shao, Z. P.; Guan, D. Q.; Huang, Y. C.; Ni, M. Bridging the charge accumulation and high reaction order for high-rate oxygen evolution and long stable Zn-air batteries. Adv. Funct. Mater. 2022, 32, 2111989.
Nallathambi, V.; Lee, J. W.; Kumaraguru, S. P.; Wu, G.; Popov, B. N. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM proton exchange membrane fuel cells. J. Power Sources 2008, 183, 34–42.
Zhang, W. J.; Fan, K. C.; Chuang, C. H.; Liu, P. R.; Zhao, J.; Qi, D. C.; Zong, L. B.; Wang, L. Molten salt assisted fabrication of Fe@FeSA-N-C oxygen electrocatalyst for high performance Zn-air battery. J. Energy Chem. 2021, 61, 612–621.
Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater. 2022, 45, 805–813.
Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.
Liu, B. K.; Xu, L. K.; Zhao, Y. S.; Du, J.; Yang, N. L.; Wang, D. Heteroatoms in graphdiyne for catalytic and energy-related applications. J. Mater. Chem. A 2021, 9, 19298–19316.
Keith, J. A.; Jerkiewicz, G.; Jacob, T. Theoretical investigations of the oxygen reduction reaction on Pt(111). ChemPhysChem 2010, 11, 2779–2794.
Chen, S.; Zhao, J. K.; Su, H. Y.; Li, H. L.; Wang, H. L.; Hu, Z. P.; Bao, J.; Zeng, J. Pd-Pt tesseracts for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 496–503.
Ravichandran, S.; Bhuvanendran, N.; Xu, Q.; Maiyalagan, T.; Xing, L.; Su, H. N. Ordered mesoporous Pt-Ru-Ir nanostructures as superior bifunctional electrocatalyst for oxygen reduction/oxygen evolution reactions. J. Colloid Interface Sci. 2022, 608, 207–218.
Koenigsmann, C.; Santulli, A. C.; Gong, K. P.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783–9795.
Liu, C.; Shen, Y.; Zhang, J. F.; Li, G.; Zheng, X. R.; Han, X. P.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction. Adv. Energy Mater. 2022, 12, 2103505.
Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933–7947.
Hai, X.; Xi, S. B.; Mitchell, S.; Harrath, K.; Xu, H. M.; Akl, D. F.; Kong, D. B.; Li, J.; Li, Z. J.; Sun, T. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 174–181.
Lu, F. H.; Fan, K. C.; Cui, L. X.; Yang, Y.; Wang, W. X.; Zhang, G. T.; Wang, C. B.; Zhang, Q.; Li, B.; Zong, L. B. et al. Cu-N4 single atoms derived from metal-organic frameworks with trapped nitrogen-rich molecules and their use as efficient electrocatalysts for oxygen reduction reaction. Chem. Eng. J. 2022, 431, 133242.
Lu, F. H.; Fan, K. C.; Cui, L. X.; Li, B.; Yang, Y.; Zong, L. B.; Wang, L. Engineering FeN4 active sites onto nitrogen-rich carbon with tubular channels for enhanced oxygen reduction reaction performance. Appl. Catal. B:Environ. 2022, 313, 121464.
Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.
Xu, H.; Zhao, Y. T.; Wang, Q.; He, G. Y.; Chen, H. Q. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 2022, 451, 214261.
Zhang, H.; Sun, Q. D.; He, Q.; Zhang, Y.; He, X. H.; Gan, T.; Ji, H. B. Single Cu atom dispersed on S, N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction. Nano Res. 2022, 15, 5995–6000.
Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J. J.; Sun, B.; Fan, Q. H.; Shao, G. J.; Chen, C.; Liu, H. et al. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 2023, 35, 2210714.
Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.
Shao, C. F.; Wu, L. M.; Wang, Y. H.; Qu, K. G.; Chu, H. L.; Sun, L. X.; Ye, J. S.; Li, B. T.; Wang, X. J. Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B:Environ. 2022, 316, 121607.
Cui, L. X.; Fan, K. C.; Zong, L. B.; Lu, F. H.; Zhou, M.; Li, B.; Zhang, L. C.; Feng, L. Y.; Li, X.; Chen, Y. N. et al. Sol-gel pore-sealing strategy imparts tailored electronic structure to the atomically dispersed Ru sites for efficient oxygen reduction reaction. Energy Storage Mater. 2022, 44, 469–476.
Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.
Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.
Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.
Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.
Zhang, L.; Meng, Q. L.; Zheng, R. X.; Wang, L. Q.; Xing, W.; Cai, W. W.; Xiao, M. L. Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction. Nano Res., 2023, 16, 4468–4487.
Wang, J.; Zhao, C. X.; Liu, J. N.; Song, Y. W.; Huang, J. Q.; Li, B. Q. Dual-atom catalysts for oxygen electrocatalysis. Nano Energy 2022, 104, 107927.
Yao, D. Z.; Tang, C.; Zhi, X.; Johannessen, B.; Slattery, A.; Chern, S.; Qiao, S. Z. Inter-metal interaction with a threshold effect in NiCu dual-atom catalysts for CO2 electroreduction. Adv. Mater. 2023, 35, 2209386.
Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Ordered mesoporous silica-(ZIF-8) core–shell spheres. Chem. Commun. 2012, 48, 9388–9390.
Wang, S. D.; He, Q.; Wang, C. D.; Jiang, H. L.; Wu, C. Q.; Chen, S. M.; Zhang, G. B.; Song, L. Active sites engineering toward superior carbon-based oxygen reduction catalysts via confinement pyrolysis. Small 2018, 14, 1800128.
Shao, C. F.; Wu, L. M.; Zhang, H. C.; Jiang, Q. K.; Xu, X. Y.; Wang, Y. H.; Zhuang, S. G.; Chu, H. L.; Sun, L. X.; Ye, J. S. et al. A versatile approach to boost oxygen reduction of Fe-N4 sites by controllably incorporating sulfur functionality. Adv. Funct. Mater. 2021, 31, 2100833.
Liang, L.; Jin, H. H.; Zhou, H.; Liu, B. S.; Hu, C. X.; Chen, D.; Wang, Z.; Hu, Z. Y.; Zhao, Y. F.; Li, H. W. et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano Energy 2021, 88, 106221.
Jia, J. T.; Chen, Z. J.; Jiang, H.; Belmabkhout, Y.; Mouchaham, G.; Aggarwal, H.; Adil, K.; Abou-Hamad, E.; Czaban-Jóźwiak, J.; Tchalala, M. R. et al. Extremely hydrophobic POPs to access highly porous storage media and capturing agent for organic vapors. Chem 2019, 5, 180–191.
Lin, X. N.; Shi, L.; Liu, F.; Jiang, C. C.; Mao, J. J.; Hu, C. G.; Liu, D. Large-scale production of holey carbon nanosheets implanted with atomically dispersed Fe sites for boosting oxygen reduction electrocatalysis. Nano Res. 2022, 15, 1926–1933.
Charreteur, F.; Jaouen, F.; Ruggeri, S.; Dodelet, J. P. Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim. Acta 2008, 53, 2925–2938.
Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.
Zhu, W. K.; Pei, Y. B.; Douglin, J. C.; Zhang, J. F.; Zhao, H. Y.; Xue, J. D.; Wang, Q. F.; Li, R.; Qin, Y. Z.; Yin, Y. et al. Multi-scale study on bifunctional Co/Fe-N-C cathode catalyst layers with high active site density for the oxygen reduction reaction. Appl. Catal. B:Environ. 2021, 299, 120656.
Li, H.; Chen, X.; Chen, J. Y.; Shen, K.; Li, Y. W. Hierarchically porous Fe, N-doped carbon nanorods derived from 1D Fe-doped MOFs as highly efficient oxygen reduction electrocatalysts in both alkaline and acidic media. Nanoscale 2021, 13, 10500–10508.
Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.
Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.
Ren, B. H.; Zhang, Z.; Wen, G. B.; Zhang, X. W.; Xu, M.; Weng, Y. Y.; Nie, Y. H.; Dou, H. Z.; Jiang, Y.; Deng, Y. P. et al. Dual-scale integration design of Sn-ZnO catalyst toward efficient and stable CO2 electroreduction. Adv. Mater. 2022, 34, 2204637.