Graphical Abstract

Methylcyclohexane (MCH) serves as an ideal hydrogen carrier in hydrogen storage and transportation process. In the continuous production of hydrogen from MCH dehydrogenation, the rational design of energy-efficient catalytic way with good performance remains an enormous challenge. Herein, an internal electric heating (IEH) assisted mode was designed and proposed by the directly electrical-driven catalyst using the resistive heating effect. The Pt/Al2O3 on Fe foam (Pt/Al2O3/FF) with unique three-dimensional network structure was constructed. The catalysts were studied in a comprehensive way including X-ray diffraction (XRD), scanning electron microscopy (SEM)-mapping, in situ extended X-ray absorption fine structure (EXAFS), and in situ CO-Fourier transform infrared (FTIR) measurements. It was found that the hydrogen evolution rate in IEH mode can reach up to above 2060 mmol·gPt−1·min−1, which is 2–5 times higher than that of reported Pt based catalysts under similar reaction conditions in conventional heating (CH) mode. In combination with measurements from high-resolution infrared thermometer, the equations of heat transfer rate, and reaction heat analysis results, the Pt/Al2O3/FF not only has high mass and heat transfer ability to promote catalytic performance, but also behaves as the heating component with a low thermal resistance and heat capacity offering a fast temperature response in IEH mode. In addition, the chemical adsorption and activation of MCH molecules can be efficiently facilitated by IEH mode, proved by the operando MCH-FTIR results. Therefore, the as-developed IEH mode can efficiently reduce the heat and mass transfer limitations and prominently boost the dehydrogenation performance, which has a broad application potential in hydrogen storage and other catalytic reaction processes.
Tollefson, J. Hydrogen vehicles: Fuel of the future. Nature 2010, 464, 1262–1264.
Kumar, A.; Daw, P.; Milstein, D. Homogeneous catalysis for sustainable energy: Hydrogen and methanol economies, fuels from biomass, and related topics. Chem. Rev. 2022, 122, 385–441.
Dong, Z.; Mukhtar, A.; Lin, H. F. Heterogeneous catalysis on liquid organic hydrogen carriers. Top. Catal. 2021, 64, 481–508.
Kwak, Y.; Kirk, J.; Moon, S.; Ohm, T.; Lee, Y. J.; Jang, M.; Park, L. H.; Ahn, C. I.; Jeong, H.; Sohn, H. et al. Hydrogen production from homocyclic liquid organic hydrogen carriers (LOHCs): Benchmarking studies and energy-economic analyses. Energy Convers. Manag. 2021, 239, 114124.
He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059.
Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. High capacity hydrogenstorage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656–675.
Ma, Z. L.; Zhao, Y. Y.; Wu, Z. H.; Tang, Q. K.; Ni, J. L.; Zhu, Y. F.; Zhang, J. G.; Liu, Y. N.; Zhang, Y.; Li, H. W. et al. Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage. Nano Res. 2022, 15, 2130–2137.
Wei, D.; Shi, X. Z.; Qu, R. Y.; Junge, K.; Junge, H.; Beller, M. Toward a hydrogen economy: Development of heterogeneous catalysts for chemical hydrogen storage and release reactions. ACS Energy Lett. 2022, 7, 3734–3752.
Orimo, S. I.; Nakamori, Y.; Eliseo, J. R.; Züttel, A.; Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 2007, 107, 4111–4132.
Zhang, L. C.; Wang, K.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Res. 2021, 14, 148–156.
Obara, S. Energy and exergy flows of a hydrogen supply chain with truck transportation of ammonia or methyl cyclohexane. Energy 2019, 174, 848–860.
Papadias, D. D.; Peng, J. K.; Ahluwalia, R. K. Hydrogen carriers: Production, transmission, decomposition, and storage. Int. J. Hydrogen Energy 2021, 46, 24169–24189.
Gianotti, E.; Taillades-Jacquin, M.; Rozière, J.; Jones, D. J. High-purity hydrogen generation via dehydrogenation of organic carriers: A review on the catalytic process. ACS Catal. 2018, 8, 4660–4680.
Sekine, Y.; Higo, T. Recent trends on the dehydrogenation catalysis of liquid organic hydrogen carrier (LOHC): A review. Top. Catal. 2021, 64, 470–480.
Salman, M. S.; Rambhujun, N.; Pratthana, C.; Srivastava, K.; Aguey-Zinsou, K. F. Catalysis in liquid organic hydrogen storage: Recent advances, challenges, and perspectives. Ind. Eng. Chem. Res. 2022, 61, 6067–6105.
Usman, M. R.; Cresswell, D. L. Options for on-board use of hydrogen based on the methylcyclohexane–toluene–hydrogen system. Int. J. Green Energy 2013, 10, 177–189.
Alhumaidan, F.; Cresswell, D.; Garforth, A. Hydrogen storage in liquid organic hydride: Producing hydrogen catalytically from methylcyclohexane. Energy Fuels 2011, 25, 4217–4234.
Zhang, X. T.; He, N.; Lin, L.; Zhu, Q. R.; Wang, G.; Guo, H. C. Study of the carbon cycle of a hydrogen supply system over a supported Pt catalyst: Methylcyclohexane–toluene–hydrogen cycle. Catal. Sci. Technol. 2020, 10, 1171–1181.
Okada, Y.; Sasaki, E.; Watanabe, E.; Hyodo, S.; Nishijima, H. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method. Int. J. Hydrogen Energy 2006, 31, 1348–1356.
Al-ShaikhAli, A. H.; Jedidi, A.; Anjum, D. H.; Cavallo, L.; Takanabe, K. Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene. ACS Catal. 2017, 7, 1592–1600.
Akram, M. S.; Aslam, R.; Alhumaidan, F. S.; Usman, M. R. An exclusive kinetic model for the methylcyclohexane dehydrogenation over alumina-supported Pt catalysts. Int. J. Chem. Kinet. 2020, 52, 415–449.
Ali, J. K.; Baiker, A. Critical examination of equilibrium constants proposed for the methylcyclohexane dehydrogenation to toluene. Chem. Eng. Commun. 2019, 206, 125–134.
Usman, M. R.; Cresswell, D. L.; Garforth, A. A. By-products formation in the dehydrogenation of methylcyclohexane. Petrol. Sci. Technol. 2011, 29, 2247–2257.
Nakaya, Y.; Miyazaki, M.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Active, selective, and durable catalyst for alkane dehydrogenation based on a well-designed trimetallic alloy. ACS Catal. 2020, 10, 5163–5172.
Li, X. Y.; Ma, D.; Bao, X. H. Dispersion of Pt catalysts supported on activated carbon and their catalytic performance in methylcyclohexane dehydrogenation. Chin. J. Catal. 2008, 29, 259–263.
Al-ShaikhAli, A. H.; Jedidi, A.; Cavallo, L.; Takanabe, K. Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system. Chem. Commun. 2015, 51, 12931–12934.
Ham, H.; Simanullang, W. F.; Kanda, Y.; Wen, Y.; Hashimoto, A.; Abe, H.; Shimizu, K. I.; Furukawa, S. Silica-decoration boosts Ni catalysis for (de)hydrogenation: Step-abundant nanostructures stabilized by silica. ChemCatChem 2021, 13, 1306–1310.
Wang, Y. G.; Shah, N.; Huffman, G. P. Pure hydrogen production by partial dehydrogenation of cyclohexane and methylcyclohexane over nanotube-supported Pt and Pd catalysts. Energy Fuels 2004, 18, 1429–1433.
Wehinger, G. D.; Kraume, M.; Berg, V.; Korup, O.; Mette, K.; Schlögl, R.; Behrens, M.; Horn, R. Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AIChE J. 2016, 62, 4436–4452.
Dou, L. G.; Yan, C. J.; Zhong, L. S.; Zhang, D.; Zhang, J. Y.; Li, X.; Xiao, L. Y. Enhancing CO2 methanation over a metal foam structured catalyst by electric internal heating. Chem. Commun. 2020, 56, 205–208.
Dou, L. G.; Fu, M. K.; Gao, Y.; Wang, L.; Yan, C. J.; Ma, T. Z.; Zhang, Q. Q.; Li, X. Efficient sulfur resistance of Fe, La and Ce doped hierarchically structured catalysts for low-temperature methanation integrated with electric internal heating. Fuel 2021, 283, 118984.
Mei, X. Y.; Zhu, X. B.; Zhang, Y. X.; Zhang, Z. L.; Zhong, Z. C.; Xin, Y.; Zhang, J. Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts. Nat. Catal. 2021, 4, 1002–1011.
Dong, Q.; Yao, Y. G.; Cheng, S. C.; Alexopoulos, K.; Gao, J. L.; Srinivas, S.; Wang, Y. F.; Pei, Y.; Zheng, C. L.; Brozena, A. H. et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 2022, 605, 470–476.
Wismann, S. T.; Engbæk, J. S.; Vendelbo, S. B.; Bendixen, F. B.; Eriksen, W. L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P. M. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019, 364, 756–759.
Zheng, Y. F.; Su, Y.; Pang, C. H.; Yang, L. Z.; Song, C. F.; Ji, N.; Ma, D. G.; Lu, X. B.; Han, R.; Liu, Q. L. Interface-enhanced oxygen vacancies of CoCuOx catalysts in situ grown on monolithic Cu foam for VOC catalytic oxidation. Environ. Sci. Technol. 2022, 56, 1905–1916.
Shen, M. C.; Zhao, G. F.; Nie, Q.; Meng, C.; Sun, W. D.; Si, J. Q.; Liu, Y.; Lu, Y. Ni-foam-structured Ni-Al2O3 ensemble as an efficient catalyst for gas-phase acetone hydrogenation to isopropanol. ACS Appl. Mater. Interfaces 2021, 13, 28334–28347.
Kapteijn, F.; Moulijn, J. A. Structured catalysts and reactors—Perspectives for demanding applications. Catal. Today 2022, 383, 5–14.
Gascon, J.; Van Ommen, J. R.; Moulijn, J. A.; Kapteijn, F. Structuring catalyst and reactor—An inviting avenue to process intensification. Catal. Sci. Technol. 2015, 5, 807–817.
Liu, R. S.; Shi, W. C.; Cheng, Y. C.; Huang, C. Y. Crystal structures and peculiar magnetic properties of α- and γ-Al2O3 powders. Mod. Phys. Lett. B 1997, 11, 1169–1174.
Zhang, J.; Guyot, F. Thermal equation of state of iron and Fe0.91Si0.09. Phys. Chem. Miner. 1999, 26, 206–211.
Sangnier, A.; Genty, E.; Iachella, M.; Sautet, P.; Raybaud, P.; Matrat, M.; Dujardin, C.; Chizallet, C. Thermokinetic and spectroscopic mapping of carbon monoxide adsorption on highly dispersed Pt/γ-Al2O3. ACS Catal. 2021, 11, 13280–13293.
Zhang, W.; Wang, H. Z.; Jiang, J. W.; Sui, Z.; Zhu, Y. A.; Chen, D.; Zhou, X. G. Size dependence of Pt catalysts for propane dehydrogenation: From atomically dispersed to nanoparticles. ACS Catal. 2020, 10, 12932–12942.
Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 2015, 350, 189–192.
Murata, K.; Kurimoto, N.; Yamamoto, Y.; Oda, A.; Ohyama, J.; Satsuma, A. Structure–property relationships of Pt–Sn nanoparticles supported on Al2O3 for the dehydrogenation of methylcyclohexane. ACS Appl. Nano Mater. 2021, 4, 4532–4541.
Edouard, D.; Huu, T. T.; Huu, C. P.; Luck, F.; Schweich, D. The effective thermal properties of solid foam beds: Experimental and estimated temperature profiles. Int. J. Heat Mass Transfer 2010, 53, 3807–3816.
Bracconi, M.; Ambrosetti, M.; Maestri, M.; Groppi, G.; Tronconi, E. A fundamental investigation of gas/solid mass transfer in open-cell foams using a combined experimental and CFD approach. Chem. Eng. J. 2018, 352, 558–571.
Bianchi, E.; Heidig, T.; Visconti, C. G.; Groppi, G.; Freund, H.; Tronconi, E. An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors. Chem. Eng. J. 2012, 198–199, 512–528.
Zhang, Z. Q.; Ding, J.; Chai, R. J.; Zhao, G. F.; Liu, Y.; Lu, Y. Oxidative dehydrogenation of ethane to ethylene: A promising CeO2-ZrO2-modified NiO-Al2O3/Ni-foam catalyst. Appl. Catal. A Gen. 2018, 550, 151–159.
Brown, R. C. Process intensification through directly coupled autothermal operation of chemical reactors. Joule 2020, 4, 2268–2289.
Hernández-Alonso, M. D.; Tejedor-Tejedor, I.; Coronado, J. M.; Anderson, M. A. Operando FTIR study of the photocatalytic oxidation of methylcyclohexane and toluene in air over TiO2–ZrO2 thin films:Influence of the aromaticity of the target molecule on deactivation. Appl. Catal. B Environ. 2011, 101, 283–293.
Wang, Z. H.; Dong, C. Y.; Tang, X.; Qin, X. T.; Liu, X. W.; Peng, M.; Xu, Y.; Song, C. Q.; Zhang, J.; Liang, X. et al. CO-tolerant RuNi/TiO2 catalyst for the storage and purification of crude hydrogen. Nat. Commun. 2022, 13, 4404.
Takise, K.; Sato, A.; Murakami, K.; Ogo, S.; Seo, J. G.; Imagawa, K. I.; Kado, S.; Sekine, Y. Irreversible catalytic methylcyclohexane dehydrogenation by surface protonics at low temperature. RSC Adv. 2019, 9, 5918–5924.