AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

TiO2 nanoparticle supported Ru catalyst for chemical upcycling of polyethylene terephthalate to alkanes

Rongxiang Li1,2Wei Zeng1,2Runyao Zhao1,2Yanfei Zhao1,2Yuepeng Wang1,2Fengtao Zhang1,2Minhao Tang1,2Ying Wang1,2Xiaoqian Chang1,2Fengtian Wu1,3Zhimin Liu1,2( )
Beijing National Laboratory for Molecular Science, Key Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Science, Institute of chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
Show Author Information

Graphical Abstract

TiO2 nanoparticle supported Ru catalyst is highly efficient for chemical upcycling of polyethylene terephthalate and polybutylene terephthalate to alkanes in the presence of H2 and H2O.

Abstract

Production of fuel and chemicals from plastic waste is one of the effective ways to upcycle spent plastics, which is an interesting topic and of significance for green and sustainable development. Herein, we demonstrate a highly efficient catalyst, TiO2 nanoparticle supported Ru nanocatalyst (Ru/TiO2), for upcycling polyethylene terephthalate (PET) to alkanes in the presence of H2 and water. Under the optimal conditions (200 °C, 60 bar H2, and small amount of H2O), PET could completely convert into alkanes, dominated with cyclohexane and methane. It was indicated that the strong interaction between the TiO2 support and Ru nanoparticles made electrons flow from the TiO2 support to the Ru nanoparticles, which thus rendered Ru/TiO2 to have ability to simultaneously catalyze PET hydrolysis and intermediate hydrogenation. This work realizes the transformation of PET to alkanes, which provides a promising way to chemically upcycle PET.

Electronic Supplementary Material

Download File(s)
12274_2023_5772_MOESM1_ESM.pdf (3 MB)

References

[1]

Tournier, V.; Topham, C. M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M. L.; Texier, H.; Gavalda, S. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219.

[2]

Sardon, H.; Dove, A. P. Plastics recycling with a difference. Science 2018, 360, 380–381.

[3]

Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.

[4]

Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046.

[5]

Carey, J. On the brink of a recycling revolution. Proc. Natl. Acad. Sci. USA 2017, 114, 612–616.

[6]

Hou, Q. D.; Zhen, M. N.; Qian, H. L.; Nie, Y. F.; Bai, X. Y.; Xia, T. L.; Rehman, M. L. U.; Li, Q. S.; Ju, M. T. Upcycling and catalytic degradation of plastic wastes. Cell. Rep. Phys. Sci. 2021, 2, 100514.

[7]

Lee, K.; Jing, Y. X.; Wang, Y. Q.; Yan, N. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem. 2022, 6, 635–652.

[8]

Nunes, B. F. S.; Oliveira, M. C.; Fernandes, A. C. Dioxomolybdenum complex as an efficient and cheap catalyst for the reductive depolymerization of plastic waste into value-added compounds and fuels. Green Chem. 2020, 22, 2419–2425.

[9]

Jing, Y. X.; Wang, Y. Q.; Furukawa, S.; Xia, J.; Sun, C. Y.; Hülsey, M. J.; Wang, H. F.; Guo, Y.; Liu, X. H.; Yan, N. Towards the circular economy: Converting aromatic plastic waste back to Arenes over a Ru/Nb2O5 catalyst. Angew. Chem., Int. Ed. 2021, 60, 5527–5535.

[10]
Lu, S. L.; Jing, Y. X.; Feng, B.; Guo, Y.; Liu, X. H.; Wang, Y. Q. H2-free plastic conversion: Converting PET back to BTX by unlocking hidden hydrogen. ChemSusChem 2021, 14, 4242–4250.
[11]

Gao, Z. W.; Ma, B.; Chen, S.; Tian, J. Q.; Zhao, C. Converting waste PET plastics into automobile fuels and antifreeze components. Nat. Commun. 2022, 13, 3343.

[12]

Kang, M. J.; Yu, H. J.; Jegal, J.; Kim, H. S.; Cha, H. G. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chem. Eng. J. 2020, 398, 125655.

[13]

Kratish, Y.; Marks, T. J. Efficient polyester hydrogenolytic deconstruction via tandem catalysis. Angew. Chem., Int. Ed. 2022, 134, e202112576.

[14]

Kratish, Y.; Li, J. Q.; Liu, S. f.; Gao, Y. S.; Marks, T. J. Polyethylene terephthalate deconstruction catalyzed by a carbon-supported single-site molybdenum-dioxo complex. Angew. Chem., Int. Ed. 2020, 59, 19857–19861.

[15]

Wu, Y. F.; Wang, X. J.; Kirlikovali, K. O.; Gong, X. Y.; Atilgan, A.; Ma, K. K.; Schweitzer, N. M.; Gianneschi, N. C.; Li, Z.; Zhang, X. et al. Catalytic degradation of polyethylene terephthalate using a phase-transitional zirconium-based metal-organic framework. Angew. Chem., Int. Ed. 2022, 61, e202117528.

[16]

Westhues, S.; Idel, J.; Klankermayer, J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci. Adv. 2018, 4, eaat9669.

[17]

Guo, X. N.; Xin, J. Y.; Lu, X. M.; Ren, B. Z.; Zhang, S. J. Preparation of 1,4-cyclohexanedimethanol by selective hydrogenation of a waste PET monomer bis(2-hydroxyethylene terephthalate). RSC Adv. 2015, 5, 485–492.

[18]

Hongkailers, S.; Jing, Y. X.; Wang, Y. Q.; Hinchiranan, N.; Yan, N. Recovery of Arenes from polyethylene terephthalate (PET) over a Co/TiO2 catalyst. ChemSusChem 2021, 14, 4330–4339.

[19]

Tang, H.; Li, N.; Li, G. Y.; Wang, A. Q.; Cong, Y.; Xu, G. L.; Wang, X. D.; Zhang, T. Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste. Green Chem. 2019, 21, 2709–2719.

[20]

Li, Y. W.; Wang, M.; Liu, X. W.; Hu, C. Q.; Xiao, D. Q.; Ma, D. Catalytic transformation of PET and CO2 into high-value chemicals. Angew. Chem., Int. Ed. 2022, 61, e202117205.

[21]

Wu, P. Y.; Lu, G. P.; Cai, C. Cobalt-molybdenum synergistic catalysis for the hydrogenolysis of terephthalate-based polyesters. Green Chem. 2021, 23, 8666–8672.

[22]

Uekert, T.; Kuehnel, M. F.; Wakerley, D. W.; Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 2018, 11, 2853–2857.

[23]

Zhou, H.; Ren, Y.; Li, Z. H.; Xu, M.; Wang, Y. Ge, R. X.; Kong, X. G.; Zheng, L. R.; Duan, H. H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679.

[24]
Liu, X.; Fang, Z. Y.; Xiong, D. K.; Gong, S. Q.; Niu, Y. L.; Chen, W.; Chen, Z. F. Upcycling PET in parallel with energy-saving H2 production via bifunctional nickel-cobalt nitride nanosheets. Nano Res., in press, https://doi.org/10.1007/s12274-022-5085-9.
[25]

Liu, X.; Fang, Z. Y.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Chen, W.; Meyer, T. J.; Chen, Z. F. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.

[26]

Wang, J. Y.; Li, X.; Wang, M. L.; Zhang, T.; Chai, X. Y.; Lu, J. L.; Wang, T. F.; Zhao, Y. X.; Ma, D. Electrocatalytic valorization of poly(ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid. ACS Catal. 2022, 12, 6722–6728.

[27]

Larichev, Y. V.; Moroz, B. L.; Bukhtiyarov, V. I. Electronic state of ruthenium deposited onto oxide supports: An XPS study taking into account the final state effects. Appl. Surf. Sci. 2011, 258, 1541–1550.

[28]

Martínez Tejada, L. M.; Muñoz, A.; Centeno, M. A.; Odriozola, J. A. In-situ Raman spectroscopy study of Ru/TiO2 catalyst in the selective methanation of CO. J. Raman Spectrosc 2016, 47, 189–197.

[29]

Zhou, H. R.; Wang, M.; Wang, F. Oxygen-vacancy-mediated catalytic methanation of lignocellulose at temperatures below 200 °C. Joule 2021, 5, 3031–3044.

[30]

Ren, Z. W.; Si, X. Q.; Chen, J. L.; Li, X. B.; Lu, F. Catalytic complete cleavage of C–O and C–C bonds in biomass to natural gas over Ru(0). ACS Catal. 2022, 12, 5549–5558.

Nano Research
Pages 12223-12229
Cite this article:
Li R, Zeng W, Zhao R, et al. TiO2 nanoparticle supported Ru catalyst for chemical upcycling of polyethylene terephthalate to alkanes. Nano Research, 2023, 16(10): 12223-12229. https://doi.org/10.1007/s12274-023-5772-1
Topics:
Part of a topical collection:

948

Views

7

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 06 March 2023
Revised: 18 April 2023
Accepted: 22 April 2023
Published: 10 June 2023
© Tsinghua University Press 2023
Return