Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Production of fuel and chemicals from plastic waste is one of the effective ways to upcycle spent plastics, which is an interesting topic and of significance for green and sustainable development. Herein, we demonstrate a highly efficient catalyst, TiO2 nanoparticle supported Ru nanocatalyst (Ru/TiO2), for upcycling polyethylene terephthalate (PET) to alkanes in the presence of H2 and water. Under the optimal conditions (200 °C, 60 bar H2, and small amount of H2O), PET could completely convert into alkanes, dominated with cyclohexane and methane. It was indicated that the strong interaction between the TiO2 support and Ru nanoparticles made electrons flow from the TiO2 support to the Ru nanoparticles, which thus rendered Ru/TiO2 to have ability to simultaneously catalyze PET hydrolysis and intermediate hydrogenation. This work realizes the transformation of PET to alkanes, which provides a promising way to chemically upcycle PET.
Tournier, V.; Topham, C. M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M. L.; Texier, H.; Gavalda, S. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219.
Sardon, H.; Dove, A. P. Plastics recycling with a difference. Science 2018, 360, 380–381.
Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.
Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046.
Carey, J. On the brink of a recycling revolution. Proc. Natl. Acad. Sci. USA 2017, 114, 612–616.
Hou, Q. D.; Zhen, M. N.; Qian, H. L.; Nie, Y. F.; Bai, X. Y.; Xia, T. L.; Rehman, M. L. U.; Li, Q. S.; Ju, M. T. Upcycling and catalytic degradation of plastic wastes. Cell. Rep. Phys. Sci. 2021, 2, 100514.
Lee, K.; Jing, Y. X.; Wang, Y. Q.; Yan, N. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem. 2022, 6, 635–652.
Nunes, B. F. S.; Oliveira, M. C.; Fernandes, A. C. Dioxomolybdenum complex as an efficient and cheap catalyst for the reductive depolymerization of plastic waste into value-added compounds and fuels. Green Chem. 2020, 22, 2419–2425.
Jing, Y. X.; Wang, Y. Q.; Furukawa, S.; Xia, J.; Sun, C. Y.; Hülsey, M. J.; Wang, H. F.; Guo, Y.; Liu, X. H.; Yan, N. Towards the circular economy: Converting aromatic plastic waste back to Arenes over a Ru/Nb2O5 catalyst. Angew. Chem., Int. Ed. 2021, 60, 5527–5535.
Gao, Z. W.; Ma, B.; Chen, S.; Tian, J. Q.; Zhao, C. Converting waste PET plastics into automobile fuels and antifreeze components. Nat. Commun. 2022, 13, 3343.
Kang, M. J.; Yu, H. J.; Jegal, J.; Kim, H. S.; Cha, H. G. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chem. Eng. J. 2020, 398, 125655.
Kratish, Y.; Marks, T. J. Efficient polyester hydrogenolytic deconstruction via tandem catalysis. Angew. Chem., Int. Ed. 2022, 134, e202112576.
Kratish, Y.; Li, J. Q.; Liu, S. f.; Gao, Y. S.; Marks, T. J. Polyethylene terephthalate deconstruction catalyzed by a carbon-supported single-site molybdenum-dioxo complex. Angew. Chem., Int. Ed. 2020, 59, 19857–19861.
Wu, Y. F.; Wang, X. J.; Kirlikovali, K. O.; Gong, X. Y.; Atilgan, A.; Ma, K. K.; Schweitzer, N. M.; Gianneschi, N. C.; Li, Z.; Zhang, X. et al. Catalytic degradation of polyethylene terephthalate using a phase-transitional zirconium-based metal-organic framework. Angew. Chem., Int. Ed. 2022, 61, e202117528.
Westhues, S.; Idel, J.; Klankermayer, J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci. Adv. 2018, 4, eaat9669.
Guo, X. N.; Xin, J. Y.; Lu, X. M.; Ren, B. Z.; Zhang, S. J. Preparation of 1,4-cyclohexanedimethanol by selective hydrogenation of a waste PET monomer bis(2-hydroxyethylene terephthalate). RSC Adv. 2015, 5, 485–492.
Hongkailers, S.; Jing, Y. X.; Wang, Y. Q.; Hinchiranan, N.; Yan, N. Recovery of Arenes from polyethylene terephthalate (PET) over a Co/TiO2 catalyst. ChemSusChem 2021, 14, 4330–4339.
Tang, H.; Li, N.; Li, G. Y.; Wang, A. Q.; Cong, Y.; Xu, G. L.; Wang, X. D.; Zhang, T. Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste. Green Chem. 2019, 21, 2709–2719.
Li, Y. W.; Wang, M.; Liu, X. W.; Hu, C. Q.; Xiao, D. Q.; Ma, D. Catalytic transformation of PET and CO2 into high-value chemicals. Angew. Chem., Int. Ed. 2022, 61, e202117205.
Wu, P. Y.; Lu, G. P.; Cai, C. Cobalt-molybdenum synergistic catalysis for the hydrogenolysis of terephthalate-based polyesters. Green Chem. 2021, 23, 8666–8672.
Uekert, T.; Kuehnel, M. F.; Wakerley, D. W.; Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 2018, 11, 2853–2857.
Zhou, H.; Ren, Y.; Li, Z. H.; Xu, M.; Wang, Y. Ge, R. X.; Kong, X. G.; Zheng, L. R.; Duan, H. H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679.
Liu, X.; Fang, Z. Y.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Chen, W.; Meyer, T. J.; Chen, Z. F. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.
Wang, J. Y.; Li, X.; Wang, M. L.; Zhang, T.; Chai, X. Y.; Lu, J. L.; Wang, T. F.; Zhao, Y. X.; Ma, D. Electrocatalytic valorization of poly(ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid. ACS Catal. 2022, 12, 6722–6728.
Larichev, Y. V.; Moroz, B. L.; Bukhtiyarov, V. I. Electronic state of ruthenium deposited onto oxide supports: An XPS study taking into account the final state effects. Appl. Surf. Sci. 2011, 258, 1541–1550.
Martínez Tejada, L. M.; Muñoz, A.; Centeno, M. A.; Odriozola, J. A. In-situ Raman spectroscopy study of Ru/TiO2 catalyst in the selective methanation of CO. J. Raman Spectrosc 2016, 47, 189–197.
Zhou, H. R.; Wang, M.; Wang, F. Oxygen-vacancy-mediated catalytic methanation of lignocellulose at temperatures below 200 °C. Joule 2021, 5, 3031–3044.
Ren, Z. W.; Si, X. Q.; Chen, J. L.; Li, X. B.; Lu, F. Catalytic complete cleavage of C–O and C–C bonds in biomass to natural gas over Ru(0). ACS Catal. 2022, 12, 5549–5558.