AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Applying machine-learning screening of single transition metal atoms anchored on N-doped γ-graphyne for carbon monoxide electroreduction toward C1 products

Dongxu Jiao1,§Dantong Zhang3,§Dewen Wang1Jinchang Fan1Xingcheng Ma1Jingxiang Zhao2( )Weitao Zheng1( )Xiaoqiang Cui1( )
State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

§ Dongxu Jiao and Dantong Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Machine learning was applied to rapidly screen single atom catalysts for carbon monoxide electroreduction production of C1 products. The effect of pH value on the carbon monoxide electroreduction (COER) catalytic performance of Mn and Ni single atom catalysts was investigated by double-reference method.

Abstract

Carbon monoxide electroreduction (COER) has been a key part of tandem electrolysis of carbon dioxide (CO2), in which searching for high catalytic performance COER electrocatalysts remains a great challenge. Herein, by means of density functional theory (DFT) computations, we explored the potential of a series of transition metal atoms anchored on N-doped γ-graphyne (TM@N-GY, TM from Ti to Au) as the COER electrocatalysts. We found that the final product selectivity of these single-atom catalysts depended on the position of the metal atom in the periodic table, with metals in the front and middle of each periodic period exhibiting high selectivity for CH4, while metals in the back producing CH3OH. Machine learning (ML) found that metal atomic number was intrinsic to the difference in COER performance of these single-atom catalysts (SACs). The free energy changes showed that Mn@N-GY and Ni@N-GY exhibited outstanding COER catalytic performance for producing CH4 and CH3OH, respectively. Our results provide theoretical and experimental guidance for designing efficient COER catalysts to generate C1 products.

Electronic Supplementary Material

Download File(s)
12274_2023_5773_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

[2]

Jia, H. L.; Li, F.; Chow, T. H.; Liu, X. Y.; Zhang, H.; Lu, Y.; Wang, J. F.; Zhang, C. Y. Construction of spatially separated gold nanocrystal/cuprous oxide architecture for plasmon-driven CO2 reduction. Nano Lett. 2022, 22, 7268–7274.

[3]

Li, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 2022, 51, 1234–1252.

[4]

Wang, Y.; Park, B. J.; Paidi, V. K.; Huang, R.; Lee, Y.; Noh, K. J.; Lee, K. S.; Han, J. W. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 2022, 7, 640–649.

[5]

Yi, J. D.; Gao, X. P.; Zhou, H.; Chen, W.; Wu, Y. E. Design of Co-Cu diatomic site catalysts for high-efficiency synergistic CO2 electroreduction at industrial-level current density. Angew. Chem., Int. Ed. 2022, 61, e202212329.

[6]

Wu, G. L.; Song, Y. R.; Zheng, Q.; Long, C.; Fan, T.; Yang, Z. J.; Huang, X. W.; Li, Q.; Sun, Y. L.; Zuo, L. L. et al. Selective electroreduction of CO2 to n-propanol in two-step tandem catalytic system. Adv. Energy Mater. 2022, 12, 2202054.

[7]

Fu, X. B.; Zhang, J. H.; Kang, Y. J. Electrochemical reduction of CO2 towards multi-carbon products via a two-step process. React. Chem. Eng. 2021, 6, 612–628.

[8]

Kong, L. Y.; Chen, Z.; Cai, Q. H.; Yin, L. C.; Zhao, J. X. Efficient electrochemical reduction of CO to C2 products on the transition metal and boron co-doped black phosphorene. Chin. Chem. Lett. 2022, 33, 2183–2187.

[9]

Jouny, M.; Hutchings, G. S.; Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2019, 2, 1062–1070.

[10]

Xiao, C. L.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A review. ACS Nano 2021, 15, 7975–8000.

[11]

Wu, X. H.; Guo, Y.; Sun, Z. S.; Xie, F. H.; Guan, D. Q.; Dai, J.; Yu, F. J.; Hu, Z. W.; Huang, Y. C.; Pao, C. W. et al. Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO2 reduction. Nat. Commun. 2021, 12, 660.

[12]

Ma, X. S.; Sun, F.; Qin, L. B.; Liu, Y. G.; Kang, X. W.; Wang, L. K.; Jiang, D. E.; Tang, Q.; Tang, Z. H. Electrochemical CO2 reduction catalyzed by atomically precise alkynyl-protected Au7Ag8, Ag9Cu6, and Au2Ag8Cu5 nanoclusters: Probing the effect of multi-metal core on selectivity. Chem. Sci. 2022, 13, 10149–10158.

[13]

Qiu, X. F.; Huang, J. R.; Yu, C.; Zhao, Z. H.; Zhu, H. L.; Ke, Z. F.; Liao, P. Q.; Chen, X. M. A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. Angew. Chem., Int. Ed. 2022, 61, e202206470.

[14]
Rong, W. F.; Zou, H. Y.; Tan, S.; Hu, E. Y.; Li, F.; Tang, C.; Dai, H.; Wei, S. T.; Ji, Y. F.; Duan, L. L. Few-atom copper catalyst for the electrochemical reduction of CO to acetate: Synergetic catalysis between neighboring Cu atoms. CCS Chem., in press, https://doi.org/10.31635/ccschem.022.202201910.
[15]

Zhu, P.; Xia, C.; Liu, C. Y.; Jiang, K.; Gao, G. H.; Zhang, X.; Xia, Y.; Lei, Y. J.; Alshareef, H. N.; Senftle, T. P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl. Acad. Sci. USA 2021, 118, e2010868118.

[16]

Wu, Z. Z.; Zhang, X. L.; Niu, Z. Z.; Gao, F. Y.; Yang, P. P.; Chi, L. P.; Shi, L.; Wei, W. S.; Liu, R.; Chen, Z. et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 2022, 144, 259–269.

[17]

Jeong, S.; Choi, M. H.; Jagdale, G. S.; Zhong, Y. X.; Siepser, N. P.; Wang, Y.; Zhan, X.; Baker, L. A.; Ye, X. C. Unraveling the structural sensitivity of CO2 electroreduction at facet-defined nanocrystals via correlative single-entity and macroelectrode measurements. J. Am. Chem. Soc. 2022, 144, 12673–12680.

[18]

Zheng, M.; Wang, P. T.; Zhi, X.; Yang, K.; Jiao, Y.; Duan, J. J.; Zheng, Y.; Qiao, S. Z. Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. 2022, 144, 14936–14944.

[19]

Li, C. S.; Xiong, H. C.; He, M.; Xu, B. J.; Lu, Q. Oxyhydroxide species enhances CO2 electroreduction to CO on Ag via coelectrolysis with O2. ACS Catal. 2021, 11, 12029–12037.

[20]

Li, J. J.; Zhang, Z. C.; Hu, W. P. Insight into the effect of metal cations in the electrolyte on performance for electrocatalytic CO2 reduction reaction. Energy Environ. Mater. 2022, 5, 1008–1009.

[21]

Wang, J. J.; Zheng, X. R.; Wang, G. J.; Cao, Y. H.; Ding, W. L.; Zhang, J. F.; Wu, H.; Ding, J.; Hu, H. L.; Han, X. P. et al. Defective bimetallic selenides for selective CO2 electroreduction to CO. Adv. Mater. 2022, 34, 2106354.

[22]

Ling, L. L.; Jiao, L.; Liu, X. S.; Dong, Y.; Yang, W. J.; Zhang, H. J.; Ye, B. J.; Chen, J.; Jiang, H. L. Potassium-assisted fabrication of intrinsic defects in porous carbons for electrocatalytic CO2 reduction. Adv. Mater. 2022, 34, 2205933.

[23]

Wang, X.; Ou, P. F.; Ozden, A.; Hung, S. F.; Tam, J.; Gabardo, C. M.; Howe, J. Y.; Sisler, J.; Bertens, K.; de Arquer, F. P. G. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag-Ru-Cu catalyst. Nat. Energy 2022, 7, 170–176.

[24]

Yang, D. R.; Ni, B.; Wang, X. Heterogeneous catalysts with well-defined active metal sites toward CO2 electrocatalytic reduction. Adv. Energy Mater. 2020, 10, 2001142.

[25]

Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. E. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.

[26]

Xu, H.; Zhao, Y. T.; Wang, Q.; He, G. Y.; Chen, H. Q. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 2022, 451, 214261.

[27]

Speck, F. D.; Kim, J. H.; Bae, G.; Joo, S. H.; Mayrhofer, K. J. J.; Choi, C. H.; Cherevko, S. Single-atom catalysts: A perspective toward application in electrochemical energy conversion. JACS Au 2021, 1, 1086–1100.

[28]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

[29]

Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

[30]

Wan, C. Z.; Duan, X. F.; Huang, Y. Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.

[31]

Li, L. B.; Huang, B. Y.; Tang, X. N.; Hong, Y. S.; Zhai, W. J.; Hu, T.; Yuan, K.; Chen, Y. W. Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv. Funct. Mater. 2021, 31, 2103857.

[32]

Lu, S.; Huynh, H. L.; Lou, F. L.; Guo, K.; Yu, Z. X. Single transition metal atom embedded antimonene monolayers as efficient trifunctional electrocatalysts for the HER, OER and ORR: A density functional theory study. Nanoscale 2021, 13, 12885–12895.

[33]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[34]

Wang, X.; Zhu, Y.; Li, H.; Lee, J. M.; Tang, Y. W.; Fu, G. T. Rare-earth single-atom catalysts: A new frontier in photo/electrocatalysis. Small Methods 2022, 6, 2200413.

[35]

Lu, Y. B.; Zhang, Z. H.; Wang, H. M.; Wang, Y. Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Appl. Catal. B: Environ. 2021, 292, 120162.

[36]

Shang, Y.; Duan, X. G.; Wang, S. B.; Yue, Q. Y.; Gao, B. Y.; Xu, X. Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. Chin. Chem. Lett. 2022, 33, 663–673.

[37]

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

[38]

Rivera-Cárcamo, C.; Serp, P. Single atom catalysts on carbon-based materials. ChemCatChem 2018, 10, 5058–5091.

[39]

Ruan, X. W.; Wang, Z. X.; Wei, Z.; Zhang, H. Y.; Zhang, L.; Zhao, X.; Singh, D. J.; Zhao, J. X.; Cui, X. Q.; Zheng, W. T. Electron cloud density localized graphitic carbon nitride with enhanced optical absorption and carrier separation towards photocatalytic hydrogen evolution. Appl. Surf. Sci. 2022, 601, 154294.

[40]

Shang, Y.; Xu, X.; Gao, B. Y.; Wang, S. B.; Duan, X. G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322.

[41]

Li, Q. D.; Chen, Y.; Du, F.; Cui, X. L.; Dai, L. M. Bias-free synthesis of hydrogen peroxide from photo-driven oxygen reduction reaction using N-doped γ-graphyne catalyst. Appl. Catal. B: Environ. 2022, 304, 120959.

[42]

Qin, Y. C.; Yang, M.; Deng, C. F.; Shen, W.; He, R. X.; Li, M. Theoretical insight into single Rh atoms anchored on N-doped γ-graphyne as an excellent bifunctional electrocatalyst for the OER and ORR: Electronic regulation of graphitic nitrogen. Nanoscale 2021, 13, 5800–5808.

[43]

He, T. W.; Matta, S. K.; Du, A. J. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Phys. Chem. Chem. Phys. 2019, 21, 1546–1551.

[44]

Zhang, Z. H.; Qi, S. Y.; Song, X. H.; Wang, J.; Zhang, W. Q.; Zhao, M. W. Stable multifunctional single-atom catalysts adsorbed on pyrazine-modified graphyne. Appl. Surf. Sci. 2021, 553, 149464.

[45]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[46]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[47]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[48]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[49]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[50]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[51]

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

[52]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[53]

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

[54]

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

[55]

Duan, Z. Y.; Henkelman, G. Theoretical resolution of the exceptional oxygen reduction activity of Au(100) in alkaline media. ACS Catal. 2019, 9, 5567–5573.

[56]

Duan, Z. Y.; Henkelman, G. Surface charge and electrostatic spin crossover effects in CoN4 electrocatalysts. ACS Catal. 2020, 10, 12148–12155.

[57]

Duan, Z. Y.; Henkelman, G. Identification of active sites of pure and nitrogen-doped carbon materials for oxygen reduction reaction using constant-potential calculations. J. Phys. Chem. C 2020, 124, 12016–12023.

[58]

Filhol, J. S.; Neurock, M. Elucidation of the electrochemical activation of water over Pd by first principles. Angew. Chem., Int. Ed. 2006, 45, 402–406.

[59]

Ding, R.; Yin, W. J.; Cheng, G.; Chen, Y. W.; Wang, J. K.; Wang, R.; Rui, Z. Y.; Li, J.; Liu, J. G. Boosting the optimization of membrane electrode assembly in proton exchange membrane fuel cells guided by explainable artificial intelligence. Energy AI 2021, 5, 100098.

[60]

Shan, P. Y.; Bai, X.; Jiang, Q.; Chen, Y. J.; Lu, S.; Song, P.; Jia, Z. P.; Xiao, T. Y.; Han, Y.; Wang, Y. Z. et al. Bilayer MN4-O-MN4 by bridge-bonded oxygen ligands: Machine learning to accelerate the design of bifunctional electrocatalysts. Renew. Energy 2023, 203, 445–454.

[61]

Ding, R.; Wang, R.; Ding, Y. Q.; Yin, W. J.; Liu, Y. D.; Li, J.; Liu, J. G. Designing AI-aided analysis and prediction models for nonprecious metal electrocatalyst-based proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 19175–19183.

[62]

Tamtaji, M.; Gao, H. Y.; Hossain, D.; Galligan, P. R.; Wong, H.; Liu, Z. J.; Liu, H. W.; Cai, Y. T.; Goddard III, W. A.; Luo, Z. T. Machine learning for design principles for single atom catalysts towards electrochemical reactions. J. Mater. Chem. A 2022, 10, 15309–15331.

[63]

Ding, R.; Ding, Y. Q.; Zhang, H. Y.; Wang, R.; Xu, Z. H.; Liu, Y. D.; Yin, W. J.; Wang, J. K.; Li, J.; Liu, J. G. Applying machine learning to boost the development of high-performance membrane electrode assembly for proton exchange membrane fuel cells. J. Mater. Chem. A 2021, 9, 6841–6850.

[64]

Mukherjee, M.; Dutta, S.; Ghosh, M.; Basuchowdhuri, P.; Datta, A. Performance of the nitrogen reduction reaction on metal bound g-C6N6: A combined approach of machine learning and DFT. Phys. Chem. Chem. Phys. 2022, 24, 17050–17058.

[65]

Umer, M.; Umer, S.; Zafari, M.; Ha, M. R.; Anand, R.; Hajibabaei, A.; Abbas, A.; Lee, G.; Kim, K. S. Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. J. Mater. Chem. A 2022, 10, 6679–6689.

[66]

Liu, Q.; Cheng, H.; Chen, T. X.; Lo, T. W. B.; Ma, J. L.; Ling, A. Q.; Wang, F. X. Boosted CO desorption behaviors induced by spatial dyadic heterostructure in polymeric carbon nitride for efficient photocatalytic CO2 conversion. Appl. Catal. B: Environ. 2021, 295, 120289.

[67]

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

[68]

Boppella, R.; Austeria, P. M.; Kim, Y.; Kim, E.; Song, I.; Eom, Y.; Kumar, D. P.; Balamurugan, M.; Sim, E.; Kim, D. H. et al. Pyrrolic N-Stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: Identifying the role of pyrrolic-N and synergistic electrocatalysis. Adv. Funct. Mater. 2022, 32, 2202351.

[69]

Li, L. L.; Zhao, Z. J.; Hu, C. L.; Yang, P. P.; Yuan, X. T.; Wang, Y. N.; Zhang, L.; Moskaleva, L.; Gong, J. L. Tuning oxygen vacancies of oxides to promote electrocatalytic reduction of carbon dioxide. ACS Energy Lett. 2020, 5, 552–558.

[70]

Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Feng, X. H.; Gang, Y.; Xiang, X. M.; Fang, L. Z.; Li, T.; Hu, Y. H. et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal. 2020, 10, 10803–10811.

[71]

Zhao, Z. L.; Lu, G. Circumventing the scaling relationship on bimetallic monolayer electrocatalysts for selective CO2 reduction. Chem. Sci. 2022, 13, 3880–3887.

[72]

Tang, M. Y.; Shen, H. M.; Sun, Q. Two-dimensional Fe-hexaaminobenzene metal-organic frameworks as promising CO2 Catalysts with high activity and selectivity. J. Phys. Chem. C 2019, 123, 26460–26466.

[73]

Sun, Y. T.; Wang, S.; Jia, J. J.; Liu, Y. J.; Cai, Q. H.; Zhao, J. X. Supported Cu3 clusters on graphitic carbon nitride as an efficient catalyst for CO electroreduction to propene. J. Mater. Chem. A 2022, 10, 14460–14469.

[74]

Feng, H. S.; Ding, H.; Wang, S.; Liang, Y. J.; Deng, Y.; Yang, Y. S.; Wei, M.; Zhang, X. Machine-learning-assisted catalytic performance predictions of single-atom alloys for acetylene semihydrogenation. ACS Appl. Mater. Interfaces 2022, 14, 25288–25296.

[75]

Saxena, S.; Khan, T. S.; Jalid, F.; Ramteke, M.; Haider, M. A. In silico high throughput screening of bimetallic and single atom alloys using machine learning and ab initio microkinetic modelling. J. Mater. Chem. A 2020, 8, 107–123.

[76]

Zhang, S.; Lu, S. H.; Zhang, P.; Tian, J. X.; Shi, L.; Ling, C. Y.; Zhou, Q. H.; Wang, J. L. Accelerated discovery of single-atom catalysts for nitrogen fixation via machine learning. Energy Environ. Mater. 2023, 6, e12304.

[77]

Niu, H.; Wan, X. H.; Wang, X. T.; Shao, C.; Robertson, J.; Zhang, Z. F.; Guo, Y. Z. Single-atom rhodium on defective g-C3N4: A promising bifunctional oxygen electrocatalyst. ACS Sustain. Chem. Eng. 2021, 9, 3590–3599.

[78]

Liu, T. Y.; Jing, Y.; Li, Y. F. Two-dimensional biphenylene: A graphene allotrope with superior activity toward electrochemical oxygen reduction reaction. J. Phys. Chem. Lett. 2021, 12, 12230–12234.

[79]

Kim, D.; Shi, J. J.; Liu, Y. Y. Substantial impact of charge on electrochemical reactions of two-dimensional materials. J. Am. Chem. Soc. 2018, 140, 9127–9131.

[80]

Hu, X.; Chen, S. Y.; Chen, L. T.; Tian, Y.; Yao, S.; Lu, Z. Y.; Zhang, X.; Zhou, Z. What is the real origin of the activity of Fe-N-C electrocatalysts in the O2 reduction reaction. Critical roles of coordinating pyrrolic N and axially adsorbing species. J. Am. Chem. Soc. 2022, 144, 18144–18152.

[81]

Liu, T. Y.; Wang, Y.; Li, Y. F. Two-dimensional organometallic frameworks with pyridinic single-metal-atom sites for bifunctional ORR/OER. Adv. Funct. Mater. 2022, 32, 2207110.

Nano Research
Pages 11511-11520
Cite this article:
Jiao D, Zhang D, Wang D, et al. Applying machine-learning screening of single transition metal atoms anchored on N-doped γ-graphyne for carbon monoxide electroreduction toward C1 products. Nano Research, 2023, 16(8): 11511-11520. https://doi.org/10.1007/s12274-023-5773-0
Topics:

1007

Views

17

Crossref

17

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 15 March 2023
Revised: 23 April 2023
Accepted: 23 April 2023
Published: 15 June 2023
© Tsinghua University Press 2023
Return