AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications

Caiyun WeiWei XuShurui JiRuiyun Huang( )Junyang LiuWenqiu SuJie BaiJiale Huang( )Wenjing Hong( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Research Centre of Chemicals for Electronic Manufacturing, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

Metallic clusters in single-cluster electronics have been summarized in this review, including the evolution of nanodevice construction, mechanisms of electronic transport and strategies for regulation, and the challenges and future directions for single-cluster electronic devices.

Abstract

Metallic clusters, ranging from 1 to 2 nm in size, have emerged as promising candidates for creating nanoelectronic devices at the single-cluster level. With the intermediate quantum properties between metals and semiconductors, these metallic clusters offer an alternative pathway to silicon-based electronics and organic molecules for miniaturized electronics with dimensions below 5 nm. Significant progress has been made in studies of single-cluster electronic devices. However, a clear guide for selecting, synthesizing, and fabricating functional single-cluster electronic devices is still required. This review article provides a comprehensive overview of single-cluster electronic devices, including the mechanisms of electron transport, the fabrication of devices, and the regulations of electron transport properties. Furthermore, we discuss the challenges and future directions for single-cluster electronic devices and their potential applications.

References

[1]

Wilcoxon, J. P.; Abrams, B. L. Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 2006, 35, 1162–1194.

[2]

Schmid, G. The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 2008, 37, 1909–1930.

[3]

Dubois, J. G. A.; Gerritsen, J. W.; Shafranjuk, S. E.; Boon, E. J. G.; Schmid, G.; van Kempen, H. Coulomb staircases and quantum size effects in tunnelling spectroscopy on ligand-stabilized metal clusters. Eur. Lett. 1996, 33, 279–284.

[4]

Ni, J. T.; Zhong, C. L.; Li, L. Y.; Su, M. X.; Wang, X. R.; Sun, J. N.; Chen, S.; Duan, C. B.; Han, C. M.; Xu, H. Deep-blue electroluminescence from phosphine-stabilized Au3 triangles and Au3Ag pyramids. Angew. Chem., Int. Ed. 2022, 61, e202213826.

[5]

Hu, F.; Guan, Z. J.; Yang, G. Y.; Wang, J. Q.; Li, J. J.; Yuan, S. F.; Liang, G. J.; Wang, Q. M. Molecular gold nanocluster Au156 showing metallic electron dynamics. J. Am. Chem. Soc. 2021, 143, 17059–17067.

[6]

Chen, T. K.; Lin, H. B.; Cao, Y. T.; Yao, Q. F.; Xie, J. P. Interactions of metal nanoclusters with light: Fundamentals and applications. Adv. Mater. 2022, 34, 2103918.

[7]

Zhu, M. Z.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H. F.; Schatz, G. C.; Jin, R. C. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J. Am. Chem. Soc. 2009, 131, 2490–2492.

[8]

Zyazin, A. S.; van den Berg, J. W. G.; Osorio, E. A.; van der Zant, H. S. J.; Konstantinidis, N. P.; Leijnse, M.; Wegewijs, M. R.; May, F.; Hofstetter, W.; Danieli, C. et al. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 2010, 10, 3307–3311.

[9]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[10]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[11]

Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

[12]

Nimtz, G.; Marquardt, P.; Gleiter, H. Size-induced metal-insulator transition in metals and semiconductors. J. Cryst. Growth 1988, 86, 66–71.

[13]

Marquardt, P.; Nimtz, G.; Mühlschlegel, B. On the quasi-static conductivity of sub-micrometer crystals. Solid State Commun. 1988, 65, 539–542.

[14]

Siu, T. C.; Wong, J. Y.; Hight, M. O.; Su, T. A. Single-cluster electronics. Phys. Chem. Chem. Phys. 2021, 23, 9643–9659.

[15]

Hu, K. J.; Yan, W. C.; Zhang, M. H.; Song, F. Q. Electrical devices designed based on inorganic clusters. Nanotechnology 2022, 33, 502001.

[16]

Albrecht, T.; Mertens, S. F. L.; Ulstrup, J. Intrinsic multistate switching of gold clusters through electrochemical gating. J. Am. Chem. Soc. 2007, 129, 9162–9167.

[17]

Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 2017, 12, 1050–1054.

[18]

Wu, C. L.; Qiao, X. H.; Robertson, C. M.; Higgins, S. J.; Cai, C. X.; Nichols, R. J.; Vezzoli, A. A chemically soldered polyoxometalate single-molecule transistor. Angew. Chem., Int. Ed. 2020, 59, 12029–12034.

[19]

Kastner, M. A. The single-electron transistor. Rev. Mod. Phys. 1992, 64, 849–858.

[20]

Gunasekaran, S.; Reed, D. A.; Paley, D. W.; Bartholomew, A. K.; Venkataraman, L.; Steigerwald, M. L.; Roy, X.; Nuckolls, C. Single-electron currents in designer single-cluster devices. J. Am. Chem. Soc. 2020, 142, 14924–14932.

[21]

Chi, L. F.; Hartig, M.; Drechsler, T.; Schwaack, T.; Seidel, C.; Fuchs, H.; Schmid, G. Single-electron tunneling in Au55 cluster monolayers. Appl. Phys. A 1998, 66, S187–S190.

[22]

Yuan, P.; Zhang, R. H.; Selenius, E.; Ruan, P. P.; Yao, Y. R.; Zhou, Y.; Malola, S.; Häkkinen, H.; Teo, B. K.; Cao, Y. et al. Solvent-mediated assembly of atom-precise gold-silver nanoclusters to semiconducting one-dimensional materials. Nat. Commun. 2020, 11, 2229.

[23]

Song, H.; Reed, M. A.; Lee, T. Single molecule electronic devices. Adv. Mater. 2011, 23, 1583–1608.

[24]

Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.

[25]

Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

[26]

Hong, W. J.; Valkenier, H.; Mészáros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; García, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2011, 2, 699–713.

[27]

Leary, E.; van Zalinge, H.; Higgins, S. J.; Nichols, R. J.; Fabrizi de Biani, F.; Leoni, P.; Marchetti, L.; Zanello, P. A molecular wire incorporating a robust hexanuclear platinum cluster. Phys. Chem. Chem. Phys. 2009, 11, 5198–5202.

[28]

Boardman, B. M.; Widawsky, J. R.; Park, Y. S.; Schenck, C. L.; Venkataraman, L.; Steigerwald, M. L.; Nuckolls, C. Conductance of single cobalt chalcogenide cluster junctions. J. Am. Chem. Soc. 2011, 133, 8455–8457.

[29]

Nakazato, K.; Thornton, T. J.; White, J.; Ahmed, H. Single-electron effects in a point contact using side-gating in delta-doped layers. Appl. Phys. Lett. 1992, 61, 3145–3147.

[30]

Chen, W.; Ahmed, H.; Nakazoto, K. Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure. Appl. Phys. Lett. 1995, 66, 3383–3384.

[31]

Bezryadin, A.; Dekker, C.; Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 1997, 71, 1273–1275.

[32]

Klein, D. L.; McEuen, P. L.; Katari, J. E. B.; Roth, R.; Alivisatos, A. P. An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 1996, 68, 2574–2576.

[33]

Wei, Z. X.; Jiang, W. R.; Bai, Z. B.; Lian, Z.; Wang, Z. G.; Song, F. Q. The synthesis and electrical transport of ligand-protected Au13 clusters. Eur. Phys. J. D 2017, 71, 237.

[34]

Xu, W.; Li, R. H.; Wang, C. H.; Zhong, J. H.; Liu, J. Y.; Hong, W. J. Investigation of electronic excited states in single-molecule junctions. Nano Res. 2022, 15, 5726–5745.

[35]

Yang, Y.; Liu, J. Y.; Zheng, J. T.; Lu, M.; Shi, J.; Hong, W. J.; Yang, F. Z.; Tian, Z. Q. Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Res. 2017, 10, 3314–3323.

[36]

Kaliginedi, V.; Rudnev, A. V.; Moreno-García, P.; Baghernejad, M.; Huang, C. C.; Hong, W. J.; Wandlowski, T. Promising anchoring groups for single-molecule conductance measurements. Phys. Chem. Chem. Phys. 2014, 16, 23529–23539.

[37]

Zharinov, V. S.; Picot, T.; Scheerder, J. E.; Janssens, E.; van de Vondel, J. Room temperature single electron transistor based on a size-selected aluminium cluster. Nanoscale 2020, 12, 1164–1170.

[38]

Ralls, K. S.; Buhrman, R. A.; Tiberio, R. C. Fabrication of thin-film metal nanobridges. Appl. Phys. Lett. 1989, 55, 2459–2461.

[39]

Ralph, D. C.; Black, C. T.; Tinkham, M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys. Rev. Lett. 1995, 74, 3241–3244.

[40]

Schön, G.; Simon, U. A fascinating new field in colloid science: Small ligand-stabilized metal clusters and their possible application in microelectronics: Part II: Future directions. Colloid. Polym. Sci. 1995, 273, 202–218.

[41]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[42]

Schmid, G. Clusters and colloids: Bridges between molecular and condensed material. Endeavour 1990, 14, 172–178.

[43]

Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.

[44]

Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O’Brien, S. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359.

[45]

Yang, P.; Arfaoui, I.; Cren, T.; Goubet, N.; Pileni, M. P. Electronic properties probed by scanning tunneling spectroscopy: From isolated gold nanocrystal to well-defined supracrystals. Phys. Rev. B 2012, 86, 075409.

[46]

Kano, S.; Azuma, Y.; Kanehara, M.; Teranishi, T.; Majima, Y. Room-temperature coulomb blockade from chemically synthesized Au nanoparticles stabilized by acid–base interaction. Appl. Phys. Express 2010, 3, 105003.

[47]

Junno, T.; Carlsson, S. B.; Xu, H. Q.; Montelius, L.; Samuelson, L. Fabrication of quantum devices by Ångström-level manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 1998, 72, 548–550.

[48]

Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.

[49]

Hong, W. J.; Manrique, D. Z.; Moreno-Garcia, P.; Gulcur, M.; Mishchenko, A.; Lambert, C. J.; Bryce, M. R.; Wandlowski, T. Single molecular conductance of tolanes: Experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 2012, 134, 2292–2304.

[50]

Liu, J. Y.; Huang, X. Y.; Wang, F.; Hong, W. J. Quantum interference effects in charge transport through single-molecule junctions: Detection, manipulation, and application. Acc. Chem. Res. 2019, 52, 151–160.

[51]

de Bruijckere, J.; Gehring, P.; Palacios-Corella, M.; Clemente-León, M.; Coronado, E.; Paaske, J.; Hedegård, P.; van der Zant, H. S. J. Ground-state spin blockade in a single-molecule junction. Phys. Rev. Lett. 2019, 122, 197701.

[52]

Vinod, C. P.; Kulkarni, G. U.; Rao, C. N. R. Size-dependent changes in the electronic structure of metal clusters as investigated by scanning tunneling spectroscopy. Chem. Phys. Lett. 1998, 289, 329–333.

[53]

Dorogi, M.; Gomez, J.; Osifchin, R.; Andres, R. P.; Reifenberger, R. Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B 1995, 52, 9071–9077.

[54]

van Kempen, H.; Dubois, J. G. A.; Gerritsen, J. W.; Schmid, G. Small metallic particles studied by scanning tunneling microscopy. Phys. B 1995, 204, 51–56.

[55]

Soldatov, E. S.; Khanin, V. V.; Trifonov, A. S.; Presnov, D. E.; Yakovenko, S. A.; Khomutov, G. B.; Gubin, C. P.; Kolesov, V. V. Single-electron transistor based on a single cluster molecule at room temperature. J. Exp. Theor. Phys. Lett. 1996, 64, 556–560.

[56]

Koo, H.; Kano, S.; Tanaka, D.; Sakamoto, M.; Teranishi, T.; Cho, G.; Majima, Y. Characterization of thiol-functionalized oligo(phenylene-ethynylene)-protected Au nanoparticles by scanning tunneling microscopy and spectroscopy. Appl. Phys. Lett. 2012, 101, 083115.

[57]

Andres, R. P.; Bein, T.; Dorogi, M.; Feng, S.; Henderson, J. I.; Kubiak, C. P.; Mahoney, W.; Osifchin, R. G.; Reifenberger, R. Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 1996, 272, 1323–1325.

[58]

Wang, B.; Wang, H. Q.; Li, H. X.; Zeng, C. G.; Hou, J. G.; Xiao, X. D. Tunable single-electron tunneling behavior of ligand-stabilized gold particles on self-assembled monolayers. Phys. Rev. B 2000, 63, 035403.

[59]

Yang, G. H.; Tan, L.; Yang, Y. Y.; Chen, S. W.; Liu, G. Y. Single electron tunneling and manipulation of nanoparticles on surfaces at room temperature. Surf. Sci. 2005, 589, 129–138.

[60]

van Bentum, P. J. M.; Smokers, R. T. M.; van Kempen, H. Incremental charging of single small particles. Phys. Rev. Lett. 1988, 60, 2543–2546.

[61]

Wilkins, R.; Ben-Jacob, E.; Jaklevic, R. C. Scanning-tunneling-microscope observations of Coulomb blockade and oxide polarization in small metal droplets. Phys. Rev. Lett. 1989, 63, 801–804.

[62]

Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 2000, 408, 67–69.

[63]

Chen, H. L.; Brasiliense, V.; Mo, J. S.; Zhang, L.; Jiao, Y.; Chen, Z.; Jones, L. O.; He, G.; Guo, Q. H.; Chen, X. Y. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 2021, 143, 2886–2895.

[64]

Zhang, B. H.; Chen, J. S.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Ligand design in ligand-protected gold nanoclusters. Small 2021, 17, 2004381.

[65]

Choi, B.; Capozzi, B.; Ahn, S.; Turkiewicz, A.; Lovat, G.; Nuckolls, C.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Solvent-dependent conductance decay constants in single cluster junctions. Chem. Sci. 2016, 7, 2701–2705.

[66]

Yuan, S. S.; Xu, X. H.; Daaoub, A.; Fang, C.; Cao, W. Q.; Chen, H.; Sangtarash, S.; Zhang, J. W.; Sadeghi, H.; Hong, W. J. Single-atom control of electrical conductance and thermopower through single-cluster junctions. Nanoscale 2021, 13, 12594–12601.

[67]

Feng, A. N.; Hou, S. J.; Yan, J. Z.; Wu, Q. Q.; Tang, Y. X.; Yang, Y.; Shi, J.; Xiao, Z. Y.; Lambert, C. J.; Zheng, N. F. et al. Conductance growth of single-cluster junctions with increasing sizes. J. Am. Chem. Soc. 2022, 144, 15680–15688.

[68]

Wei, C. Y.; Ye, J. Y.; Su, Y. M.; Zheng, J. T.; Xiao, S. Q.; Chen, J. W.; Yuan, S. S.; Zhang, C. Y.; Bai, J.; Xu, H. et al. Halide anchors for single-cluster electronics. CCS Chem. 2022, 1–9.

[69]

Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002.

[70]

Xie, X. M.; Li, P. H.; Xu, Y. X.; Zhou, L.; Yan, Y.; Xie, L. H.; Jia, C. C.; Guo, X. F. Single-molecule junction: A reliable platform for monitoring molecular physical and chemical processes. ACS Nano 2022, 16, 3476–3505.

[71]

Thijssen, J. M.; van der Zant, H. S. J. Charge transport and single-electron effects in nanoscale systems. Phys. Status Solidi B 2008, 245, 1455–1470.

[72]

Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

[73]

Kaliginedi, V.; Moreno-Garcia, P.; Valkenier, H.; Hong, W. J.; García-Suárez, V. M.; Buiter, P.; Otten, J. L.; Hummelen, J. C.; Lambert, C. J.; Wandlowski, T. Correlations between molecular structure and single-junction conductance: A case study with oligo(phenylene-ethynylene)-type wires. J. Am. Chem. Soc. 2012, 134, 5262–5275.

[74]

Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. Coherent tunneling transport in molecular junctions. J. Phys. Chem. C 2010, 114, 20431–20435.

[75]

Kano, S.; Tada, T.; Majima, Y. Nanoparticle characterization based on STM and STS. Chem. Soc. Rev. 2015, 44, 970–987.

[76]

Danilov, A.; Kubatkin, S.; Kafanov, S.; Hedegård, P.; Stuhr-Hansen, N.; Moth-Poulsen, K.; Bjørnholm, T. Electronic transport in single molecule junctions: Control of the molecule-electrode coupling through intramolecular tunneling barriers. Nano Lett. 2008, 8, 1–5.

[77]

Roy, X.; Schenck, C. L.; Ahn, S.; Lalancette, R. A.; Venkataraman, L.; Nuckolls, C.; Steigerwald, M. L. Quantum soldering of individual quantum dots. Angew. Chem., Int. Ed. 2012, 51, 12473–12476.

[78]

Zotti, L. A.; Leary, E.; Soriano, M.; Cuevas, J. C.; Palacios, J. J. A molecular platinum cluster junction: a single-molecule switch. J. Am. Chem. Soc. 2013, 135, 2052–2055.

[79]

Bai, J.; Li, X. H.; Zhu, Z. Y.; Zheng, Y.; Hong, W. J. Single-molecule electrochemical transistors. Adv. Mater. 2021, 33, 2005883.

[80]

Higaki, T.; Li, Q.; Zhou, M.; Zhao, S.; Li, Y. W.; Li, S. T.; Jin, R. C. Toward the tailoring chemistry of metal nanoclusters for enhancing functionalities. Acc. Chem. Res. 2018, 51, 2764–2773.

[81]

Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.

[82]

Boronat, M.; Leyva-Pérez, A.; Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: Attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 2014, 47, 834–844.

[83]

Huang, J. H.; Si, Y. B.; Dong, X. Y.; Wang, Z. Y.; Liu, L. Y.; Zang, S. Q.; Mak, T. C. W. Symmetry breaking of atomically precise fullerene-like metal nanoclusters. J. Am. Chem. Soc. 2021, 143, 12439–12444.

[84]

Li, J.; Hou, S. J.; Yao, Y. R.; Zhang, C. Y.; Wu, Q. Q.; Wang, H. C.; Zhang, H. W.; Liu, X. Y.; Tang, C.; Wei, M. X. et al. Room-temperature logic-in-memory operations in single-metallofullerene devices. Nat. Mater. 2022, 21, 917–923.

[85]

Greenwald, J. E.; Cameron, J.; Findlay, N. J.; Fu, T. R.; Gunasekaran, S.; Skabara, P. J.; Venkataraman, L. Highly nonlinear transport across single-molecule junctions via destructive quantum interference. Nat. Nanotechnol. 2021, 16, 313–317.

[86]

Sherif, S.; Rubio-Bollinger, G.; Pinilla-Cienfuegos, E.; Coronado, E.; Cuevas, J. C.; Agrait, N. Current rectification in a single molecule diode: The role of electrode coupling. Nanotechnology 2015, 26, 291001.

[87]

Schönenberger, C.; van Houten, H.; Donkersloot, H. C. Single-electron tunnelling observed at room temperature by scanning-tunnelling microscopy. Eur. Lett. 1992, 20, 249–254.

[88]

Zhang, N.; Hu, H.; Qu, L.; Huo, R.; Zhang, J.; Duan, C. B.; Meng, Y. S.; Han, C. M.; Xu, H. Overcoming efficiency limitation of cluster light-emitting diodes with asymmetrically functionalized biphosphine Cu4I4 cubes. J. Am. Chem. Soc. 2022, 144, 6551–6557.

[89]

Lee, T. H.; Dickson, R. M. Single-molecule LEDs from nanoscale electroluminescent junctions. J. Phys. Chem. B 2003, 107, 7387–7390.

[90]

Benten, W.; Nilius, N.; Ernst, N.; Freund, H. J. Photon emission spectroscopy of single oxide-supported Ag-Au alloy clusters. Phys. Rev. B 2005, 72, 045403.

[91]

Yu, A.; Li, S. W.; Czap, G.; Ho, W. Tunneling-electron-induced light emission from single gold nanoclusters. Nano Lett. 2016, 16, 5433–5436.

[92]

Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. Single-molecule magnets. MRS Bull. 2011, 25, 66–71.

[93]

Heersche, H. B.; de Groot, Z.; Folk, J. A.; van der Zant, H. S. J.; Romeike, C.; Wegewijs, M. R.; Zobbi, L.; Barreca, D.; Tondello, E.; Cornia, A. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 2006, 96, 206801.

[94]

Barraza-Lopez, S.; Park, K.; García-Suárez, V.; Ferrer, J. First-principles study of electron transport through the single-molecule magnet Mn12. Phys. Rev. Lett. 2009, 102, 246801.

[95]

Hao, H.; Zheng, X. H.; Jia, T.; Zeng, Z. Room temperature memory device using single-molecule magnets. RSC Adv. 2015, 5, 54667–54671.

[96]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[97]

Zang, Y. P.; Stone, I.; Inkpen, M. S.; Ng, F.; Lambert, T. H.; Nuckolls, C.; Steigerwald, M. L.; Roy, X.; Venkataraman, L. In situ coupling of single molecules driven by gold-catalyzed electrooxidation. Angew. Chem., Int. Ed. 2019, 58, 16008–16012.

[98]

Peiris, C. R.; Vogel, Y. B.; Le Brun, A. P.; Aragonès, A. C.; Coote, M. L.; Díez-Pérez, I.; Ciampi, S.; Darwish, N. Metal-single-molecule-semiconductor junctions formed by a radical reaction bridging gold and silicon electrodes. J. Am. Chem. Soc. 2019, 141, 14788–14797.

[99]

Aragonès, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Electrostatic catalysis of a Diels–Alder reaction. Nature 2016, 531, 88–91.

[100]

Shen, H.; Xu, Z.; Wang, L. Z.; Han, Y. Z.; Liu, X. H.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Tertiary chiral nanostructures from C–H···F directed assembly of chiroptical superatoms. Angew. Chem., Int. Ed. 2021, 60, 22411–22416.

[101]

Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M. Chiral superatomic nanoclusters Ag47 induced by the ligation of amino acids. Angew. Chem., Int. Ed. 2021, 60, 11430–11435.

[102]

Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.

[103]

Zheng, K. Y.; Fung, V.; Yuan, X.; Jiang, D. E.; Xie, J. P. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977–18983.

[104]

Wang, Y.; Su, H.; Ren, L.; Malola, S.; Lin, S.; Teo, B. K.; Hakkinen, H.; Zheng, N. Site preference in multimetallic nanoclusters: Incorporation of alkali metal ions or copper atoms into the alkynyl-protected body-centered cubic cluster [Au7Ag8(C≡CtBu)12]+. Angew. Chem., Int. Ed. 2016, 55, 15152–15156.

[105]

Liao, L. W.; Zhou, S. M.; Dai, Y. F.; Liu, L. R.; Yao, C. H.; Fu, C. F.; Yang, J. L.; Wu, Z. K. Mono-mercury doping of Au25 and the HOMO/LUMO energies evaluation employing differential pulse voltammetry. J. Am. Chem. Soc. 2015, 137, 9511–9514.

[106]

Wang, K.; Meyhofer, E.; Reddy, P. Thermal and thermoelectric properties of molecular junctions. Adv. Funct. Mater. 2019, 30, 1904534.

[107]

Rincón-García, L.; Ismael, A. K.; Evangeli, C.; Grace, I.; Rubio-Bollinger, G.; Porfyrakis, K.; Agraït, N.; Lambert, C. J. Molecular design and control of fullerene-based bi-thermoelectric materials. Nat. Mater. 2016, 15, 289–293.

Nano Research
Pages 65-78
Cite this article:
Wei C, Xu W, Ji S, et al. Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications. Nano Research, 2024, 17(1): 65-78. https://doi.org/10.1007/s12274-023-5774-z
Topics:

1547

Views

1

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 19 March 2023
Revised: 16 April 2023
Accepted: 23 April 2023
Published: 29 June 2023
© Tsinghua University Press 2023
Return