AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles

Yuying Guo1Meng Zhang1Tingting Cheng1Yuxin Xie1Laibin Zhao1Liang Jiang3Wenxin Zhao1Liying Yuan1Alan Meng2Jian Zhang2Ting Wang2( )Zhenjiang Li1( )
College of Electromechanical Engineering, Key Laboratory of Polymer Material Advanced Manufacturing’s Technology of Shandong province, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
College of Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
Show Author Information

Graphical Abstract

In this study, on the basis of carbon fiber (Cf)@Fe3O4 nanocomposites obtained by the electrostatic spinning and reflow method, Cf@FeS2 nanocomposite was successfully prepared during a further hydrothermal process. The products exhibit excellent electromagnetic wave absorption performances with a minimum reflection loss (RLmin) of −54.11 dB at 2.13 mm matching thickness. At the same time, the optimal effective absorption bandwidth (EAB) value of 6.04 GHz at a thickness of 1.98 mm covers the whole Ku band, suggesting its excellent electromagnetic wave absorption performances.

Abstract

Carbon-based electromagnetic wave absorbing materials (absorbers) adhered with metallic sulfide nanoparticles of good electrical conductivity attract increasing researchers’ attention. In this study, on the basis of carbon fiber (Cf)@Fe3O4 nanocomposites obtained by the electrostatic spinning and reflow method, Cf@FeS2 nanocomposite was successfully prepared during a further hydrothermal process. The products exhibit excellent electromagnetic wave absorption performances with a minimum reflection loss (RLmin) of −54.11 dB at 2.13 mm matching thickness. At the same time, the optimal effective absorption bandwidth (EAB) value of 6.04 GHz at a thickness of 1.98 mm covers the whole Ku band, suggesting its excellent electromagnetic wave absorption performances. In addition, the interlaced network structure constructed by carbon fiber, outstanding conductivity of FeS2 nanoparticles, and interfacial polarization from hetero-structure play significant parts in enhancing the electromagnetic parameters and absorption performances. All these results suggest that the Cf@FeS2 nanocomposites can be taken as a new electromagnetic wave-absorbing material under their low density, simple craft, and strong absorption characteristics.

Electronic Supplementary Material

Download File(s)
12274_2023_5776_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[2]

Li, N.; Huang, G. W.; Li, Y. Q.; Xiao, H. M.; Feng, Q. P.; Hu, N.; Fu, S. Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

[3]

Chen, X. L.; Jia, Z. R.; Feng, A. L.; Wang, B. B.; Tong, X. H.; Zhang, C. H.; Wu, G. L. Hierarchical Fe3O4@carbon@MnO2 hybrid for electromagnetic wave absorber. J. Colloid Interfaces Sci. 2019, 553, 465–474.

[4]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[5]

Wang, J.; Wu, X. Y.; Wang, Y. J.; Zhao, W. Y.; Zhao, Y.; Zhou, M.; Wu, Y.; Ji, G. B. Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nanomicro Lett. 2022, 15, 11.

[6]

Li, Z. J.; Wang, X. H.; Ling, H. L.; Lin, H.; Wang, T.; Zhang, M.; Meng, A. L.; Li, Q. D. Electromagnetic wave absorption properties of SiC@SiO2 nanoparticles fabricated by a catalyst-free precursor pyrolysis method. J. Alloys Compd. 2020, 830, 154643.

[7]

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nanomicro Lett. 2022, 14, 89.

[8]

Liu, Z. X.; Li, C. C.; Zhang, X. F.; Zhou, B. Z.; Wen, S. P.; Zhou, Y. F.; Chen, S. J.; Jiang, L.; Jerrams, S.; Zhou, F. L. Biodegradable polyurethane fiber-based strain sensor with a broad sensing range and high sensitivity for human motion monitoring. ACS Sustainable Chem. Eng. 2022, 10, 8788–8798.

[9]

Gui, X. C.; Wang, K. L.; Wei, J. Q.; Lü, R. T.; Shu, Q. K.; Jia, Y.; Wang, C.; Zhu, H. W.; Wu, D. H. Microwave absorbing properties and magnetic properties of different carbon nanotubes. Sci. China Ser. E Technol. Sci. 2009, 52, 227–231.

[10]

Zhang, M.; Ling, H. L.; Ding, S. Q.; Xie, Y. X.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Bian, H. G.; Lin, H.; Li, Z. J. et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 2021, 174, 248–259.

[11]

Meng, F. B.; Wang, H. G.; Huang, F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: A review and prospective. Compos. B: Eng. 2018, 137, 260–277.

[12]

Cui, H. P.; Zhao, P. F.; Hu, B. X.; Long, A. C.; He, S. M.; Chen, G. J.; Liao, L. S.; Liao, J. H.; Zhao, Y. F. Sustainable microwave absorbing material based on macadamia nutshell derived porous carbon. Nano 2022, 17, 2250010.

[13]

Li, Z. J.; Lin, H.; Xie, Y. X.; Zhao, L. B.; Guo, Y. Y.; Cheng, T. T.; Ling, H. L.; Meng, A. L.; Li, S. X.; Zhang, M. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 124, 182–192.

[14]

Li, G.; Xie, T. S.; Yang, S. L.; Jin, J. H.; Jiang, J. M. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 2012, 116, 9196–9201.

[15]

Huang, L. X.; Duan, Y. P.; Shi, Y. P.; Ma, X. R.; Pang, H. F.; Zeng, Q. W.; Che, R. C. Chiral asymmetric polarizations generated by bioinspired helical carbon fibers to induce broadband microwave absorption and multispectral photonic manipulation. Adv. Opt. Mater. 2022, 10, 2200249.

[16]

Hu, Z.; Jin, S. L.; Lu, W. Z.; Tang, S.; Guo, C. T.; Lu, Y. G.; Zhang, R.; Liu, Y.; Jin, M. L. Effect of carbonization temperature on microwave absorbing properties of polyacrylonitrile-based carbon fibers. Fuller. Nanotub. Carbon Nanostructures 2017, 25, 637–641.

[17]

Wang, W. W.; Yi, L. T.; Zheng, Y. Z.; Lu, J.; Jiang, A. S.; Wang, D. Photochromic and mechanochromic cotton fabric for flexible rewritable media based on acrylate latex with spiropyran cross-linker. Comp. Commun. 2023, 37, 101455.

[18]

Xie, Y. X.; Guo. Y. Y.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Meng, A. L.; Zhang, M.; Li, Z. J. Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite. Chem. Eng. J. 2023, 457, 141205.

[19]

Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nanomicro Lett. 2022, 14, 224.

[20]

Ning, M. Q.; Li, J. B.; Kuang, B. Y.; Wang, C. Z.; Su, D. Z.; Zhao, Y. J.; Jin, H. B.; Cao, M. S. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption. Appl. Surf. Sci. 2018, 447, 244–253.

[21]

Han, B. H.; Chu, W. L.; Han, X. J.; Xu, P.; Liu, D. W.; Cui, L. R.; Wang, Y. H.; Zhao, H. H.; Du, Y. C. Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon 2020, 168, 404–414.

[22]

Zhou, X. F.; Jia, Z. R.; Zhang, X. X.; Wang, B. B.; Wu, W.; Liu, X. H.; Xu, B. H.; Wu, G. L. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J. Mater. Sci. Technol. 2021, 87, 120–132.

[23]

Park, J. H.; Lee, S.; Ro, J. C.; Suh, S. J. Yolk–shell Fe-Fe3O4@C nanoparticles with excellent reflection loss and wide bandwidth as electromagnetic wave absorbers in the high-frequency band. Appl. Surf. Sci. 2022, 573, 151469.

[24]

Ye, W.; Sun, Q. L.; Zhang, G. Y. Effect of heat treatment conditions on properties of carbon-fiber-based electromagnetic-wave-absorbing composites. Ceram. Int. 2019, 45, 5093–5099.

[25]

Qiang, C. W.; Xu, J. C.; Zhang, Z. Q.; Tian, L. L.; Xiao, S. T.; Liu, Y.; Xu, P. Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J. Alloys Compd. 2010, 506, 93–97.

[26]

Sun, Q. L.; Sun, L.; Cai, Y. Y.; Ji, T.; Zhang, G. Y. Activated carbon fiber/Fe3O4 composite with enhanced electromagnetic wave absorption properties. RSC Adv. 2018, 8, 35337–35342.

[27]

Zhou, P. P.; Wang, X. K.; Wang, L. X.; Zhang, J.; Song, Z.; Qiu, X.; Yu, M. X.; Zhang, Q. T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance. J. Alloys Compd. 2019, 805, 1071–1080.

[28]

Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

[29]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[30]

Liu, X. X.; Liu, L. M.; Yan, W. W.; Wang, Y. F.; Huang, C. F.; Wang, Z. J. Hierarchical Fe3O4@FeS2 nanocomposite as high-specific-capacitance electrode material for supercapacitors. Energy Technol. 2020, 8, 2000544.

[31]

Xu, J.; Cui, Y. H.; Wang, J. Q.; Fan, Y. H.; Shah, T.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Fabrication of wrinkled carbon microspheres and the effect of surface roughness on the microwave absorbing properties. Chem. Eng. J. 2020, 401, 126027.

[32]

Gou, G. J.; Meng, F. B.; Wang, H. G.; Jiang, M.; Wei, W.; Zhou, Z. W. Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption. Nano Res. 2019, 12, 1423–1429.

[33]

Zhou, X. F.; Zhang, C. H.; Zhang, M.; Feng, A. L.; Qu, S. L.; Zhang, Y.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105627.

[34]

Li, Z. J.; Lin, H.; Ding, S. Q.; Ling, H. L.; Wang, T.; Miao, Z. Q.; Zhang, M.; Meng, A. L.; Li, Q. D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159.

[35]

Chen, G. Z.; Xu, D. W.; Chen, P.; Guo, X.; Yu, Q.; Qiu, H. F. Constructing and optimizing hollow bird-nest-patterned C@Fe3O4 composites as high-performance microwave absorbers. J. Magn. Magn. Mater. 2021, 532, 167990.

[36]

Xu, J.; Liu, Z. H.; Li, Q.; Wang, Y. B.; Shah, T.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Wrinkled Fe3O4@C magnetic composite microspheres: Regulation of magnetic content and their microwave absorbing performance. J. Colloid Interface Sci. 2021, 601, 397–410.

[37]

Jin, Y. H.; Luo, X.; Zhang, J. L.; Yu, Y. P.; An, J.; Zhang, J. F.; Zhao, D. L.; Gao, K. W. Electro-magnetic wave absorbing properties study of nano-composites based on Fe3O4. Sci. Adv. Mater. 2021, 13, 447–454.

[38]

Ma, W. J.; He, P.; Wang, T. Y.; Xu, J.; Liu, X. Y.; Zhuang, Q. X.; Cui, Z. K.; Lin, S. L. Microwave absorption of carbonization temperature-dependent uniform yolk–shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021, 420, 129875.

[39]

Liang, C. B.; He, J.; Zhang, Y. L.; Zhang, W.; Liu, C. L.; Ma, X. T.; Liu, Y. Q.; Gu, J. W. MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 2022, 224, 109445.

[40]

Yang, N.; Luo, Z. X.; Chen, S. C.; Wu, G.; Wang, Y. Z. Fe3O4 nanoparticle/N-doped carbon hierarchically hollow microspheres for broadband and high-performance microwave absorption at an ultralow filler loading. ACS Appl. Mater. Interfaces 2020, 12, 18952–18963.

[41]

Zhan, Y. Q.; Long, Z. H.; Wan, X. Y.; Zhang, J. M.; He, S. J.; He, Y. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Appl. Surf. Sci. 2018, 444, 710–720.

[42]

Zhang, K. C.; Zhang, Q.; Gao, X. B.; Chen, X. F.; Wang, Y.; Li, W. C.; Wu, J. Y. Effect of absorbers’ composition on the microwave absorbing performance of hollow Fe3O4 nanoparticles decorated CNTs/graphene/C composites. J. Alloys Compd. 2018, 748, 706–716.

[43]

Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Chen, L.; Zhang, C. H.; Liu, X. H.; Wu, G. L. In-situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. B: Eng. 2020, 199, 108261.

[44]

Zhang, S.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 2023, 16, 3395–3407.

[45]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[46]

Zhang, Z. Y.; Zhao, Y. H.; Li, Z.; Zhang, L. J.; Liu, Z. X.; Long, Z. K.; Li, Y. J.; Liu, Y.; Fan, R. H.; Sun, K. et al. Synthesis of carbon/SiO2 core–sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 513–524.

[47]

Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760.

[48]

Wu, N. N.; Zhao, B. B.; Liu, J. Y.; Li, Y. L.; Chen, Y. B.; Chen, L.; Wang, M.; Guo, Z. H. MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv. Compos. Hybrid Mater. 2021, 4, 707–715.

[49]

Zhao, T. B.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 2023, 19, 2206323.

[50]

Ye, Z. W.; Wang, K. J.; Li, X. Q.; Yang, J. J. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials. J. Alloys Compd. 2022, 893, 162396.

[51]

Cheng, T. T.; Guo, Y. Y.; Xie, Y. X.; Zhao, L. B.; Wang, T.; Meng, A. L.; Li, Z. J.; Zhang, M. Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance. Carbon 2023, 206, 181–191.

[52]

Zhang, M.; Li, Z. J.; Wang, T.; Ding, S. Q.; Song, G. Y.; Zhao, J.; Meng, A. L.; Yu, H. Y.; Li, Q. D. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem. Eng. J. 2019, 362, 619–627.

[53]

Zhang, K. C.; Gai, X. Q.; Zhang, X. G.; Chen, X. F.; Li, H. X.; Zhao, X.; Chen, H.; Li, J. B. Preparation of nitrogen and sulfur co-doped graphene/Fe3O4/C nanocomposite and study on the absorbing properties. J. Mater. Sci. Mater. Electron. 2021, 32, 8807–8818.

[54]

Fan, M. H.; Zhang, L. L.; Li, K. Q.; Liu, J. W.; Zheng, Y. N.; Zhang, L.; Song, S. Y.; Qiao, Z. A. FeS2@C core–shell nanochains as efficient electrocatalysts for hydrogen evolution reaction. ACS Appl. Nano Mater. 2019, 2, 3889–3896.

[55]

Pan, K. F.; Zhai, Y. Y.; Zhang, J. W.; Yu, K. FeS2/C nanowires as an effective catalyst for oxygen evolution reaction by electrolytic water splitting. Materials 2019, 12, 3364.

[56]

Lu, Z. X.; Wang, N. N.; Zhang, Y. H.; Xue, P.; Guo, M. Q.; Tang, B.; Xu, X.; Wang, W. X.; Bai, Z. C.; Dou, S. X. Metal–organic framework-derived sea-cucumber-like FeS2@C nanorods with outstanding pseudocapacitive Na-ion storage properties. ACS Appl. Energy Mater. 2018, 1, 6234–6241.

[57]

Man, Z. M.; Li, P.; Zhou, D.; Wang, Y. Z.; Liang, X. H.; Zang, R.; Li, P. X.; Zuo, Y. Q.; Lam, Y. M.; Wang, G. X. Two birds with one stone: FeS2@C yolk–shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 2020, 20, 3769–3777.

[58]

Song, T. T.; Liu, Q.; Liu, J. Y.; Yang, W. L.; Chen, R. R.; Jing, X. Y.; Takahashi, K.; Wang, J. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property. Appl. Surf. Sci. 2015, 355, 495–501.

[59]

Xu, Q. T.; Xue, H. G.; Guo, S. P. FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. Electrochim. Acta 2018, 292, 1–9.

[60]

Liu, J. L.; Wang, M.; Zhang, L. M.; Zang, D. Y.; Liu, H.; Francesca Liotta, L.; Wu, H. J. Tunable sulfur vacancies and hetero-interfaces of FeS2-based composites for high-efficiency electromagnetic wave absorption. J. Colloid Interfaces Sci. 2021, 591, 148–160.

[61]

Van Nguyen, T.; Truong, N. T. N.; Ho, P.; Trinh, T. K.; Kim, J. H.; Park, C. Green and simple preparation of carbon-coated iron pyrite thin films for solar cells application. J. Mater. Sci. Mater. Electron. 2019, 30, 19752–19759.

[62]

Zhu, Y. J.; Fan, X. L.; Suo, L. M.; Luo, C.; Gao, T.; Wang, C. S. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano. 2016, 10, 1529–1538.

[63]

Wang, Q.; Liu, Z. Q.; Zhao, H. Y.; Huang, H.; Jiao, H.; Du, Y. P. MOF-derived porous Ni2P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 18720–18727.

[64]

Zhang, X.; Zhu, W. F.; Zhang, W. D.; Zheng, S. R.; Qi, S. H. Preparation of TiO2/Fe3O4/CF composites for enhanced microwave absorbing performance. J. Mater. Sci. Mater. Electron. 2018, 29, 7194–7202.

[65]

Liang, Y. Q.; Yin, X. Q.; Zhang, Y. Q.; Zheng, S. S.; Wu, Z. N.; Jia, H. Y.; Chen, Y. Electromagnetic response and microwave absorption properties of CF/Fe3O4 absorbing composites. J. Mater. Sci. Mater. Electron. 2022, 33, 2152–2165.

[66]

Zhao, B.; Liang, L. Y.; Deng, J. S.; Bai, Z. Y.; Liu, J. W.; Guo, X. Q.; Gao, K.; Guo, W. H.; Zhang, R. 1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties. CrystEngComm 2017, 19, 6579–6587.

[67]

Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.

[68]

Liao, Z. J.; Ma, M. L.; Tong, Z. Y.; Bi, Y. X.; Chung, K. L.; Qiao, M. T.; Ma, Y.; Ma, A. J.; Wu, G. L.; Li, Z. X. et al. Fabrication of one-dimensional ZnFe2O4@carbon@MoS2/FeS2 composites as electromagnetic wave absorber. J. Colloid Interfaces Sci. 2021, 600, 90–98.

[69]

Wang, N.; Wang, Y.; Lu, Z.; Cheng, R. R.; Yang, L. Q.; Li, Y. F. Hierarchical core–shell FeS2/Fe7S8@C microspheres embedded into interconnected graphene framework for high-efficiency microwave attenuation. Carbon 2023, 202, 254–264.

[70]

Liu, C.; Wang, B. C.; Zhang, C.; Mu, C. P.; Wen, F. S.; Xiang, J. Y.; Nie, A. M.; Liu, Z. Y. Simple preparation and excellent microwave attenuation property of Fe3O4- and FeS2- decorated graphene nanosheets by liquid-phase exfoliation. J. Alloys Compd. 2019, 810, 151881.

[71]

Govindasamy, T.; Mathew, N. K.; Asapu, V. K.; Subramanian, V.; Subramanian, B. Investigation on evaluation of Fe3S4-carbon black nanohybrids for EMI shield in X-band region. Diam. Relat. Mater. 2023, 131, 109608.

[72]

Li, Z. J.; Lin, H.; Wu, S. Y.; Su, X. Y.; Wang, T.; Zhao, W.; Jiang, Y. J.; Ling, H. L.; Meng, A. L.; Zhang, M. Rice husk derived porous carbon embedded with Co3Fe7 nanoparticles towards microwave absorption. Compos. Sci. Technol. 2022, 229, 109673.

[73]

Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

[74]

Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; Xie, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nanomicro Lett. 2022, 14, 157.

[75]

Yang, H. J.; Cao, W. Q.; Zhang, D. Q.; Su, T. J.; Shi, H. L.; Wang, W. Z.; Yuan, J.; Cao, M. S. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 2015, 7, 7073–7077.

[76]

Xu, H. L.; Yin, X. W.; Li, M. H.; Ye, F.; Han, M. K.; Hou, Z. X.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 2018, 132, 343–351.

[77]

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

[78]

Cheng, J. Y.; Zhang, H. B.; Ning, M. Q.; Raza, H.; Zhang, D. Q.; Zheng, G. P.; Zheng, Q. B.; Che, R. C. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 2022, 32, 2200123.

[79]

Zhao, L. B.; Guo, Y. Y.; Xie, Y. X.; Cheng, T. T.; Meng, A. L.; Yuan, L. Y.; Zhao, W. X.; Sun, C. L.; Li, Z. J.; Zhang, M. Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption. Appl. Surf. Sci. 2022, 592, 153324.

[80]

Jiang, Z. Y.; Si, H. X.; Li, Y.; Li, D.; Chen, H. H.; Gong, C. H.; Zhang, J. W. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 2022, 15, 8546–8554.

Nano Research
Pages 9591-9601
Cite this article:
Guo Y, Zhang M, Cheng T, et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Research, 2023, 16(7): 9591-9601. https://doi.org/10.1007/s12274-023-5776-x
Topics:

997

Views

45

Crossref

42

Web of Science

44

Scopus

0

CSCD

Altmetrics

Received: 29 March 2023
Revised: 21 April 2023
Accepted: 24 April 2023
Published: 30 May 2023
© Tsinghua University Press 2023
Return