AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Wettability control of defective TiO2 with alkyl acid for highly efficient photocatalytic ammonia synthesis

Renquan Guan1Xueying Cheng1Yunning Chen1Zhengkai Wu1Zhao Zhao2Qingkun Shang1( )Yingnan Sun3( )Zaicheng Sun4( )
Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
Faculty of Physics, Northeast Normal University, Changchun 130024, China
Instrumental Analysis Center, Yancheng Teachers University, Yancheng 224007, China
Center of excellence for environmental safety and biological effects, Beijing Key Lab for Green Catalysis and Separation, Faculty of Environment and life, Beijing University of Technology, Beijing 100124, China
Show Author Information

Graphical Abstract

Photocatalytic nitrogen fixation reactions usually occur at the solid–liquid–gas three-phase interface, which inevitably makes the hydrogen production reaction compete with the nitrogen fixation reaction, and it is a key scientific issue to make the nitrogen fixation reaction dominant in the competing reaction. In this contribution, the structure–effect relationship between surface hydrophobicity and the performance of ammonia synthesis was systematically investigated by using alkyl acids with different carbon chain lengths to modify the surface of defective TiO2. The experimental results show that the hydrogen evolution reaction is significantly suppressed in the competing reactions, and the nitrogen fixation reaction presents a dominant position. The best-performing catalyst C8-Vo-TiO2 (Vo = oxygen vacancy) has a nitrogen fixation efficiency of up to 392 μmol·g·h−1.

Abstract

Ammonia is an important chemical raw material and non-carbon-based fuel. Photocatalytic ammonia production technology as a mild alternative to the traditional Harbor–Bosch route is carried out at the air, liquid, and solid three-phase interface. Promoting the activation of N2, depressing hydrogen evolution reaction (HER), and increasing the local N2 concentration around the catalyst surface are critical factors in achieving high conversion efficiency. In this paper, we proposed that defective TiO2 is surface-modified by alkyl acids with different carbon chain lengths (C2, C5, C8, C11, and C14) to tune the catalyst surface properties. The defect sites greatly promote N2 adsorption and activation. The wettability of the catalyst can be regulated from hydrophilic to hydrophobic by the length of the alkyl chain. The hydrophobic surface enhances the N2 adsorption and increases the local N2 concentration due to its aerophile. Meanwhile, it depresses the proton adsorption and HER. Overall, the nitrogen reduction reaction (NRR) is greatly promoted. Among the series of samples, they present a systematic change and have a maximal NRR performance for n-octanoic acid-defective TiO2 (C8-Vo-TiO2; Vo = oxygen vacancy). The rate of ammonia production can be as high as 392 μmol·g−1·h−1. This work provides a new strategy for efficient ammonia synthesis at the three-phase interface using photocatalyst technology.

Electronic Supplementary Material

Download File(s)
12274_2023_5779_MOESM1_ESM.pdf (1.6 MB)
12274_2023_5779_MOESM2_ESM.pdf (1 MB)

References

[1]

Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3−x/MXene for N2 electroreduction to NH3. Adv. Energy Mater. 2021, 12, 2103022.

[2]

Ma, X. L.; Liu, J. C.; Xiao, H.; Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 2018, 140, 46–49.

[3]

Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 2017, 139, 10929–10936.

[4]

Zhang, G. Q.; Yang, X.; He, C. X.; Zhang, P. X.; Mi, H. W. Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation. J. Mater. Chem. A 2020, 8, 334–341.

[5]

Ospina-Betancourth, C.; Acharya, K.; Allen, B.; Entwistle, J.; Head, I. M.; Sanabria, J.; Curtis, T. P. Enrichment of nitrogen-fixing bacteria in a nitrogen-deficient wastewater treatment system. Environ. Sci. Technol. 2020, 54, 3539–3548.

[6]

Cao, N.; Chen, Z.; Zang, K. T.; Xu, J.; Zhong, J.; Luo, J.; Xu, X.; Zheng, G. F. Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun. 2019, 10, 2877.

[7]

Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

[8]

Trenerry, M. J.; Wallen, C. M.; Brown, T. R.; Park, S. V.; Berry, J. F. Spontaneous N2 formation by a diruthenium complex enables electrocatalytic and aerobic oxidation of ammonia. Nat. Chem. 2021, 13, 1221–1227.

[9]

Zhao, J. X.; Liu, X. J.; Ren, X.; Sun, X.; Tian, D. X.; Wei, Q.; Wu, D. Defect-rich ZnS nanoparticles supported on reduced graphene oxide for high-efficiency ambient N2-to-NH3 conversion. Appl. Catal. B: Environ. 2021, 284, 119746.

[10]

Fang, Y. F.; Liu, Z. C.; Han, J. R.; Jin, Z. Y.; Han, Y. Q.; Wang, F. X.; Niu, Y. S.; Wu, Y. P.; Xu, Y. H. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv. Energy Mater. 2019, 9, 1803406.

[11]

Schrauzer, G. N.; Guth, T. D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1977, 99, 7189–7193.

[12]

Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.

[13]

Rebreyend, C.; de Bruin, B. Photolytic N2 splitting: A road to sustainable NH3 production. Angew. Chem., Int. Ed. 2015, 54, 42–44.

[14]

Tian, C. S.; Sheng, W. L.; Tan, H.; Jiang, H.; Xiong, C. R. Fabrication of lattice-doped TiO2 nanofibers by vapor-phase growth for visible light-driven N2 conversion to ammonia. ACS Appl. Mater. Interfaces 2018, 10, 37453–37460.

[15]

Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

[16]

Wu, S. Q.; Chen, Z. Y.; Yue, W. H.; Mine, S.; Toyao, T.; Matsuoka, M.; Xi, X. G.; Wang, L. Z.; Zhang, J. L. Single-atom high-valent Fe(IV) for promoted photocatalytic nitrogen hydrogenation on porous TiO2-SiO2. ACS Catal. 2021, 11, 4362–4371.

[17]

Yao, C. K.; Wang, R.; Wang, Z. S.; Lei, H.; Dong, X. P.; He, C. Z. Highly dispersive and stable Fe3+ active sites on 2D graphitic carbon nitride nanosheets for efficient visible-light photocatalytic nitrogen fixation. J. Mater. Chem. A 2019, 7, 27547–27559.

[18]

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

[19]

Niu, L. J.; Liu, Z. W.; Liu, G. H.; Li, M. X.; Zong, X. P.; Wang, D. D.; An, L.; Qu, D.; Sun, X. M.; Wang, X. Y. et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 2022, 15, 3886–3893.

[20]

Guan, R. Q.; Wang, D. D.; Zhang, Y. J.; Liu, C.; Xu, W.; Wang, J. U.; Zhao, Z.; Feng, M.; Shang, Q. K.; Sun, Z. C. Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface. Appl. Catal. B: Environ. 2021, 282, 119580.

[21]

Chen, Y. N.; Zhang, X. Y.; Wang, L. L.; Cheng, X. Y.; Shang, Q. K. Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: Adsorption combined with photocatalysis. Chem. Eng. J. 2020, 402, 126260.

[22]

Guan, R. Q.; Zhai, H. J.; Li, J. X.; Qi, Y. F.; Li, M. X.; Song, M. Y.; Zhao, Z.; Zhang, J. K.; Wang, D. D.; Tan, H. Q. Reduced mesoporous TiO2 with Cu2S heterojunction and enhanced hydrogen production without noble metal cocatalyst. Appl. Surf. Sci. 2020, 507, 144772.

[23]

Zhao, G. D.; Xuan, J. Y.; Gong, Q. Q.; Wang, L. L.; Ren, J. J.; Sun, M. L.; Jia, F. C.; Yin, G. C.; Liu, B. In situ growing double-layer TiO2 nanorod arrays on new-type FTO electrodes for low-concentration NH3 detection at room temperature. ACS Appl. Mater. Interfaces 2020, 12, 8573–8582.

[24]

Cheng, X. Y.; Guan, R. Q.; Chen, Y. N.; Sun, Y. N.; Shang, Q. K. The unique TiO2(B)/BiOCl0.7I0.3-P Z-scheme heterojunction effectively degrades and mineralizes the herbicide fomesafen. Chem. Eng. J. 2022, 431, 134021.

[25]

Yaghoubi, H.; Li, Z.; Chen, Y.; Ngo, H. T.; Bhethanabotla, V. R.; Joseph, B.; Ma, S. Q.; Schlaf, R.; Takshi, A. Toward a visible light-driven photocatalyst: The effect of midgap-states-induced energy gap of undoped TiO2 nanoparticles. ACS Catal. 2015, 5, 327–335.

[26]

Sun, M. L.; Liu, X. L.; Zhao, G. D.; Kong, W. C.; Xuan, J. Y.; Tan, S. G.; Sun, Y. P.; Wei, S. L.; Ren, J. F.; Yin, G. C. Sn4+ doping combined with hydrogen treatment for CdS/TiO2 photoelectrodes: An efficient strategy to improve quantum dots loading and charge transport for high photoelectrochemical performance. J. Power Sources 2019, 430, 80–89.

[27]

Song, G. X.; Gao, R.; Zhao, Z.; Zhang, Y. J.; Tan, H. Q.; Li, H. B.; Wang, D. D.; Sun, Z. C.; Feng, M. High-spin state Fe(III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification. Appl. Catal. B: Environ. 2022, 301, 120809.

[28]

Chen, Y. N.; Yang, L.; Sun, Y. N.; Guan, R. Q.; Liu, D.; Zhao, J.; Shang, Q. K. A high-performance composite CDs@Cu-HQCA/TiO2 flower photocatalyst: Synergy of complex-sensitization, TiO2-morphology control and carbon dot-surface modification. Chem. Eng. J. 2022, 436, 134978.

[29]

Zhao, Z.; Wang, D. D.; Gao, R.; Wen, G. B.; Feng, M.; Song, G. X.; Zhu, J. B.; Luo, D.; Tan, H. Q.; Ge, X. et al. Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites. Angew. Chem., Int. Ed. 2021, 60, 11910–11918.

[30]

Shi, W. L.; Sun, W.; Liu, Y. N.; Li, X. Y.; Lin, X.; Guo, F.; Hong, Y. Z. Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation. Renew. Energy 2022, 182, 958–968.

[31]

Li, J. X.; Wang, D. D.; Guan, R. Q.; Zhang, Y. J.; Zhao, Z.; Zhai, H. J.; Sun, Z. C. Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustainable Chem. Eng. 2020, 8, 18258–18265.

[32]

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

[33]

Su, Y. F.; Zhang, Q. Y.; Chen, L.; Bao, L. Y.; Lu, Y.; Shi, Q.; Wang, J.; Chen, S.; Wu, F. Riveting dislocation motion: The inspiring role of oxygen vacancies in the structural stability of Ni-rich cathode materials. ACS Appl. Mater. Interfaces 2020, 12, 37208–37217.

[34]

Yang, S. X.; Du, R. Q.; Yu, Y. H.; Zhang, Z. P.; Wang, F. One-step electrodeposition of carbon quantum dots and transition metal ions for N-doped carbon coupled with NiFe oxide clusters: A high-performance electrocatalyst for oxygen evolution. Nano Energy 2020, 77, 105057.

[35]

Jia, G. R.; Wang, Y.; Cui, X. Q.; Zhang, H. Z.; Zhao, J. X.; Li, L. H.; Gu, L.; Zhang, Q. H.; Zheng, L. R.; Wu, J. D. et al. Wet-chemistry hydrogen doped TiO2 with switchable defects control for photocatalytic hydrogen evolution. Matter 2022, 5, 206–218.

[36]

Yin, Q.; Luo, J. N.; Zhang, J.; Zheng, L. R.; Cui, G. Q.; Han, J. B.; O’Hare, D. High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode. J. Mater. Chem. A 2020, 8, 12548–12555.

[37]

Cheng, Y.; Pang, K. L.; Xu, X. H.; Yuan, P. F.; Zhang, Z. G.; Wu, X.; Zheng, L. R.; Zhang, J. N.; Song, R. Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon 2020, 157, 153–163.

[38]

Li, M. X.; Zhang, J.; Wang, L. J.; Cheng, X. Y.; Gao, X. C.; Wang, Y. Q.; Zhang, G. Y.; Qi, Y. F.; Zhai, H. J.; Guan, R. Q. et al. Direct Z-scheme oxygen-vacancy-rich TiO2/Ta3N5 heterojunction for degradation of ciprofloxacin under visible light: Degradation pathways and mechanism insight. Appl. Surf. Sci. 2022, 583, 152516.

[39]

Wang, L. J.; Qi, Y. F.; Li, H.; Guan, R. Q.; Zhang, F. L.; Zhou, Q. F.; Wu, D. D.; Zhao, Z.; Zhou, G.; Sun, Z. C. Au/g-C3N4 heterostructure sensitized by black phosphorus for full solar spectrum waste-to-hydrogen conversion. Sci. China Mater. 2022, 65, 974–984.

[40]

Yu, S.; Fan, X. B.; Wang, X.; Li, J. G.; Zhang, Q.; Xia, A. D.; Wei, S. Q.; Wu, L. Z.; Zhou, Y.; Patzke, G. R. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun. 2018, 9, 4009.

[41]

Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem. 2021, 133, 6189–6194.

[42]

Zhao, Y.; Li, X. K.; Fan, X.; Wang, H. S.; Liu, Y. L.; Chen, Y. Y.; Yang, T. Y.; Ye, J.; Huang, H.; Li, H. T. et al. Small-molecule catalyzed H2O2 production via a phase-transfer photocatalytic process. Appl. Catal. B: Environ. 2022, 314, 121499.

[43]

Zhang, S. Y.; Gao, M. J.; Zhai, Y. P.; Wen, J. Q.; Yu, J. K.; He, T. W.; Kang, Z. H.; Lu, S. Y. Which kind of nitrogen chemical states doped carbon dots loaded by g-C3N4 is the best for photocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 622, 662–674.

[44]

Wu, Z. Y.; Wang, X. T.; Li, Y.; Zhao, H.; Wang, J. W.; Huang, H.; Liu, Y.; Kang, Z. H. Converting water impurity in organic solvent into hydrogen and hydrogen peroxide by organic semiconductor photocatalyst. Appl. Catal. B: Environ. 2022, 305, 121047.

[45]

Han, Y. D.; Wu, J.; Li, Y.; Gu, X. Q.; He, T. W.; Zhao, Y.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon dots enhance the interface electron transfer and photoelectrochemical kinetics in TiO2 photoanode. Appl. Catal. B: Environ. 2022, 304, 120983.

[46]

Zhao, Y. J.; Xu, L. L.; Wang, X.; Wang, Z. Z.; Liu, Y.; Wang, Y.; Wang, Q. L.; Wang, Z. T.; Huang, H.; Liu, Y. et al. A comprehensive understanding on the roles of carbon dots in metallated graphyne based catalyst for photoinduced H2O2 production. Nano Today 2022, 43, 101428.

[47]

Zhou, Y. J.; Wu, J.; Wang, Z. Z.; Huang, H.; Liu, Y.; Kang, Z. H. A biomass derived porous carbon materials with adjustable interfacial electron transmission dynamics as highly-efficient air cathode for Zn-air battery. Mater. Res. Bull. 2022, 153, 111908.

Nano Research
Pages 10770-10778
Cite this article:
Guan R, Cheng X, Chen Y, et al. Wettability control of defective TiO2 with alkyl acid for highly efficient photocatalytic ammonia synthesis. Nano Research, 2023, 16(8): 10770-10778. https://doi.org/10.1007/s12274-023-5779-7
Topics:

716

Views

12

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 19 February 2023
Revised: 13 April 2023
Accepted: 25 April 2023
Published: 31 May 2023
© Tsinghua University Press 2023
Return