Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Peptide-modified delivery systems are enabling the improvement of the targeting specificity, biocompatibility, stability, etc. However, the precise design of a peptide-decorated surface for a designated function has remained to be challenging due to a lack of mechanistic understanding of the interactions between surface-bound peptide ligands and their receptors. Enlightened by the recent report on pairwise interactions between peptides in the solution state and surface-immobilized state, we used computational simulations to explore the contributing mechanisms underlining the observed binding affinity characteristics. Molecular dynamics simulations were performed to sample and compare conformations of homo-octapeptides free in solution (mobile peptides) and bound to the surface (N-terminal fixed peptides). We found that peptides converged to more extended and rigid conformations when immobilized to the surface and confirmed that the extended structures could increase the space available to counter-interacting peptides during the peptide–peptide interactions. In addition, studies on interactions between stationary and mobile peptides revealed that main-chain/side-chain and side-chain/side-chain hydrogen bonds play an important role. The presented efforts in this work may provide supportive references for peptide design and modification on the nanoparticle surface as well as guidance for analyzing peptide–receptor interactions through an emphasis on hydrogen bonds during peptide design and an understanding of the influence on the binding affinity by the sequence-dependant conformational changes after peptide immobilization.
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.
Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.
Lindberg, J.; Nilvebrant, J.; Nygren, P. Å.; Lehmann, F. Progress and future directions with peptide–drug conjugates for targeted cancer therapy. Molecules 2021, 26, 6042.
Muttenthaler, M.; King, G. F.; Adams, D. J.; Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325.
Qiao, Z. Y.; Lin, Y. X.; Lai, W. J.; Hou, C. Y.; Wang, Y.; Qiao, S. L.; Zhang, D.; Fang, Q. J.; Wang, H. A general strategy for facile synthesis and in situ screening of self-assembled polymer-peptide nanomaterials. Adv. Mater. 2016, 28, 1859–1867.
von Maltzahn, G.; Park, J. H.; Lin, K. Y.; Singh, N.; Schwöppe, C.; Mesters, R.; Berdel, W. E.; Ruoslahti, E.; Sailor, M. J.; Bhatia, S. N. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 2011, 10, 545–552.
Xiang, Z. C.; Yang, X. L.; Xu, J. J.; Lai, W. J.; Wang, Z. H.; Hu, Z. Y.; Tian, J. S.; Geng, L.; Fang, Q. J. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials 2017, 115, 53–64.
Bai, L. L.; Du, Y. M.; Peng, J. X.; Liu, Y.; Wang, Y. M.; Yang, Y. L.; Wang, C. Peptide-based isolation of circulating tumor cells by magnetic nanoparticles. J. Mater. Chem. B 2014, 2, 4080–4088.
Zhang, Y. J.; Zhang, H. R.; Ghosh, D.; Williams, R. O. Just how prevalent are peptide therapeutic products? A critical review. Int. J. Pharm. 2020, 587, 119491.
Du, H. W.; Hu, X. Y.; Duan, H. Y.; Yu, L. L.; Qu, F. Y.; Huang, Q. X.; Zheng, W. S.; Xie, H. Y.; Peng, J. X.; Tuo, R. et al. Principles of inter-amino-acid recognition revealed by binding energies between homogeneous oligopeptides. ACS Cent. Sci. 2019, 5, 97–108.
Zou, Y. M.; Yu, L. L.; Fang, X. C.; Zheng, Y. F.; Yang, Y. L.; Wang, C. Position-coded multivalent peptide–peptide interactions revealed by tryptophan-scanning mutagenesis. J. Pept. Sci. 2020, 26, e3273.
Zou, Y. M.; Tu, B.; Yu, L. L.; Zheng, Y. F.; Lin, Y. C.; Luo, W. D.; Yang, Y. L.; Fang, Q. J.; Wang, C. Peptide conformation and oligomerization characteristics of surface-mediated assemblies revealed by molecular dynamics simulations and scanning tunneling microscopy. RSC Adv. 2019, 9, 41345–41350.
Samieegohar, M.; Sha, F.; Clayborne, A. Z.; Wei, T. ReaxFF MD simulations of peptide-grafted gold nanoparticles. Langmuir 2019, 35, 5029–5036.
Ma, W. W.; Saccardo, A.; Roccatano, D.; Aboagye-Mensah, D.; Alkaseem, M.; Jewkes, M.; Di Nezza, F.; Baron, M.; Soloviev, M.; Ferrari, E. Modular assembly of proteins on nanoparticles. Nat. Commun. 2018, 9, 1489.
González-Díaz, N. E.; López-Rendón, R.; Ireta, J. Insight into the dipeptide self-assembly process using density functional theory. J. Phys. Chem. C 2019, 123, 2526–2532.
Zheng, Y. F.; Luo, W. D.; Yu, L. L.; Chen, S. X.; Mao, K. J.; Fang, Q. J.; Yang, Y. L.; Wang, C.; Zhu, H.; Tu, B. Heterochirality-mediated cross-strand nested hydrophobic interaction effects manifested in surface-bound peptide assembly structures. J. Phys. Chem. B 2022, 126, 723–733.
Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB:Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713.
Feldman, H. J.; Hogue, C. W. V. A fast method to sample real protein conformational space. 3.0.CO;2-B">Proteins: Struct. Funct. Bioinf. 2000, 39, 112–131.
Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341.
Roe, D. R.; Cheatham III, T. E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095.
Finkelstein, A. V.; Badretdinov, A. Y.; Gutin, A. M. Why do protein architectures have boltzmann-like statistics. Proteins: Struct. Funct. Bioinf. 1995, 23, 142–150.
Shao, J. Y.; Tanner, S. W.; Thompson, N.; Cheatham, T. E. Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J. Chem. Theory Comput. 2007, 3, 2312–2334.
Hou, T. J.; Wang, J. M.; Li, Y. Y.; Wang, W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J. Comput. Chem. 2011, 32, 866–877.
Yang, T. Y.; Wu, J. C.; Yan, C. L.; Wang, Y. F.; Luo, R.; Gonzales, M. B.; Dalby, K. N.; Ren, P. Y. Virtual screening using molecular simulations. Proteins: Struct. Funct. Bioinf. 2011, 79, 1940–1951.
Oehme, D. P.; Brownlee, R. T. C.; Wilson, D. J. D. Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. J. Comput. Chem. 2012, 33, 2566–2580.
Wang, J. M.; Hou, T. J. Develop and test a solvent accessible surface area-based model in conformational entropy calculations. J. Chem. Inf. Model. 2012, 52, 1199–1212.
Hou, T. J.; Wang, J. M.; Li, Y. Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011, 51, 69–82.
Rastelli, G.; Rio, A. D.; Degliesposti, G.; Sgobba, M. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J. Comput. Chem. 2010, 31, 797–810.
Sun, H. Y.; Li, Y. Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys. 2014, 16, 16719–16729.
Genheden, S. MM/GBSA and LIE estimates of host–guest affinities:Dependence on charges and solvation model. J. Comput. Aided Mol. Des. 2011, 25, 1085–1093.
Onufriev, A.; Bashford, D.; Case, D. A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Struct. Funct. Bioinf. 2004, 55, 383–394.
Weiser, J.; Shenkin, P. S.; Still, W. C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). 3.0.CO;2-A">J. Comput. Chem. 1999, 20, 217–230.
Cock, P. J. A.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C. J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B. et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Xu, F.; Deng, Z. X.; Lin, S. J. Tryptophan, an important starting material in biosynthesis of microbial natural products. Microbiol. China 2013, 40, 1796–1809.
Sanchez, K. M.; Kang, G.; Wu, B. J.; Kim, J. E. Tryptophan–lipid interactions in membrane protein folding probed by ultraviolet resonance Raman and fluorescence spectroscopy. Biophys. J. 2011, 100, 2121–2130.
Song, Z. H.; Chen, X.; You, X. R.; Huang, K. Q.; Dhinakar, A.; Gu, Z. P.; Wu, J. Self-assembly of peptide amphiphiles for drug delivery: The role of peptide primary and secondary structures. Biomater. Sci. 2017, 5, 2369–2380.
Huang, F.; Nau, W. M. A conformational flexibility scale for amino acids in peptides. Angew. Chem., Int. Ed. 2003, 42, 2269–2272.
Wang, G. L.; Dunbrack, R. L. Jr. PISCES: A protein sequence culling server. Bioinformatics 2003, 19, 1589–1591.