AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

1D/2D composite subnanometer channels for ion transport: The role of confined water

Yuhao Li1,2Xiaorui Jin1,2Xinhai Yan1,2Xinyu Ai1,2Xin Yang3Zi-Jian Zheng3Kun Huang4Gaofeng Zhao5Yongan Yang1,2Meiling Wu1,2( )Kai-Ge Zhou1,2( )
Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
School of Chemical Engineering and Analytical Science, National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
School of Civil Engineering, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

A sub-nanoscale confinement strategy is developed based on a nacre-like structure to modulate the activity of water in electrolyte and achieve excellent electrochemical performance of Zn metal batteries.

Abstract

As a mass transport media, water is an alternative of organic solvent applied in rechargeable batteries, due to its unique properties, including fast ionic migration, easy-processibility, economic/environmental friendliness, and flame retardancy. However, due to the high activity of water molecules in aqueous electrolytes, the corrosion of metal anode, side reactions, and inferior metal electrodeposition behavior leads to unstable cycling performance, poor Coulombic efficiency (CE), and early-staged failure of batteries. Despite several attempts to regulate the activity of water, migration of ions is sacrificed, due to the limited methods to control the water states. Herein, we developed a subnanoscale confinement strategy based on a nacre-like structure to modulate the activity of water in the solid electrolytes. By tuning the ratio between the two-dimensional (2D) vermiculite and one-dimensional (1D) cellulose nanofibers (CNFs), the capillary size in the 1D/2D structure is altered to achieve a fast Zn2+ transport. Our dielectric relaxation and molecular dynamics studies indicate that the enhanced Zn2+ conductivity is attributed to the fast water relaxation in the precisely defined 1D/2D capillary. Taking advantage of the regulated activity of the confined water in 2D capillary, the composite vermiculite membrane can suppress the corrosion and side reactions between Zn electrode and water molecular, endowing a reversible Zn2+ stripping/plating behavior and a stable cycling performance for 900 h. Based on our confinement strategy to control the water states by 1D/2D structures, this work will open an avenue toward aqueous energy storage devices with excellent reversibility, high safety, and long-term stability.

Electronic Supplementary Material

Download File(s)
12274_2023_5790_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

[2]

Kundu, D.; Hosseini Vajargah, S.; Wan, L. W.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous vs. nonaqueous Zn-ion batteries: Consequences of the desolvation penalty at the interface. Energy Environ. Sci. 2018, 11, 881–892.

[3]

Wu, M. L.; Zhang, Y.; Xu, L.; Yang, C. P.; Hong, M.; Cui, M. J.; Clifford, B. C.; He, S. M.; Jing, S. S.; Yao, Y. et al. A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 2022, 5, 3402–3416.

[4]

Ao, H. S.; Zhao, Y. Y.; Zhou, J.; Cai, W. L.; Zhang, X. T.; Zhu, Y. C.; Qian, Y. T. Rechargeable aqueous hybrid ion batteries: Developments and prospects. J. Mater. Chem. A 2019, 7, 18708–18734.

[5]

Huang, S.; Zhu, J. C.; Tian, J. L.; Niu, Z. Q. Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. -Eur. J. 2019, 25, 14480–14494.

[6]

Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

[7]

Zhang, Y. J.; Chen, Z.; Qiu, H. Y.; Yang, W. H.; Zhao, Z. M.; Zhao, J. W.; Cui, G. L. Pursuit of reversible Zn electrochemistry: A time-honored challenge towards low-cost and green energy storage. NPG Asia Mater. 2020, 12, 4.

[8]

Ruan, P. C.; Liang, S. Q.; Lu, B. G.; Fan, H. J.; Zhou, J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem., Int. Ed. 2022, 61, e202200598.

[9]

Wang, T. T.; Li, C. P.; Xie, X. S.; Lu, B. G.; He, Z. X.; Liang, S. Q.; Zhou, J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano 2020, 14, 16321–16347.

[10]

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

[11]

Zhang, Y.; Zhao, L. H.; Liang, Y. L.; Wang, X. J.; Yao, Y. Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries. eScience 2022, 2, 110–115.

[12]

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

[13]

Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

[14]

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

[15]

Chen, C. Y.; Matsumoto, K.; Kubota, K.; Hagiwara, R.; Xu, Q. A room-temperature molten hydrate electrolyte for rechargeable zinc-air batteries. Adv. Energy Mater. 2019, 9, 1900196.

[16]

Ren, H. Z.; Li, S.; Wang, B.; Zhang, Y. Y.; Wang, T.; Lv, Q.; Zhang, X. Y.; Wang, L.; Han, X.; Jin, F. et al. Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv. Mater. 2022, 34, e2208237.

[17]

Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem., Int. Ed. 2021, 60, 7366–7375.

[18]

Xie, J.; Liang, Z. J.; Lu, Y. C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 2020, 19, 1006–1011.

[19]

Peng, J.; Liu, Y. H.; Lv, H. F.; Li, Y. X.; Lin, Y.; Su, Y. Q.; Wu, J. J.; Liu, H. F.; Guo, Y. Q.; Zhuo, Z. W. et al. Stoichiometric two-dimensional non-Van der Waals AgCrS2 with superionic behaviour at room temperature. Nat. Chem. 2021, 13, 1235–1240.

[20]

Shao, J. J.; Raidongia, K.; Koltonow, A. R.; Huang, J. X. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602.

[21]

Jing, Y.; Zhou, Z.; Cabrera, C. R.; Chen, Z. F. Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2014, 2, 12104–12122.

[22]

Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546–550.

[23]

Qiu, H.; Xue, M. M.; Shen, C.; Guo, W. L. Anomalous cation diffusion in salt-doped confined bilayer ice. Nanoscale 2018, 10, 8962–8968.

[24]
Cui, H. J.; Guo, Y. B.; Ma, W.; Zhou, Z. 2 D materials for electrochemical energy storage: Design, preparation, and application. ChemSusChem 2020, 13, 1155–1171.
[25]

Malfait, B.; Jani, A.; Mietner, J. B.; Lefort, R.; Huber, P.; Fröba, M.; Morineau, D. Influence of pore surface chemistry on the rotational dynamics of nanoconfined water. J. Phys. Chem. C 2021, 125, 16864–16874.

[26]

Yang, Q.; Sun, P. Z.; Fumagalli, L.; Stebunov, Y. V.; Haigh, S. J.; Zhou, Z. W.; Grigorieva, I. V.; Wang, F. C.; Geim, A. K. Capillary condensation under atomic-scale confinement. Nature 2020, 588, 250–253.

[27]

Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K. et al. Anomalously low dielectric constant of confined water. Science 2018, 360, 1339–1342.

[28]

Vasu, K. S.; Prestat, E.; Abraham, J.; Dix, J.; Kashtiban, R. J.; Beheshtian, J.; Sloan, J.; Carbone, P.; Neek-Amal, M.; Haigh, S. J. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 2016, 7, 12168.

[29]

Ai, X. Y.; Li, Y. H.; Li, Y. W.; Gao, T. T.; Zhou, K. G. Recent progress on the smart membranes based on two-dimensional materials. Chin. Chem. Lett. 2022, 33, 2832–2844.

[30]

Han, D.; Dong, X. Y.; Yu, G. L.; Gao, T. T.; Zhou, K. G. Tunable mass transport in the artificial smart membranes based on two-dimensional materials. Adv. Membr. 2022, 2, 100045.

[31]

Rojaee, R.; Shahbazian-Yassar, R. Two-dimensional materials to address the lithium battery challenges. ACS Nano 2020, 14, 2628–2658.

[32]

Huang, K.; Rowe, P.; Chi, C.; Sreepal, V.; Bohn, T.; Zhou, K. G.; Su, Y.; Prestat, E.; Pillai, P. B.; Cherian, C. T. et al. Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil–water separation. Nat. Commun. 2020, 11, 1097.

[33]

Chen, Y. K.; Xu, Z. J.; Zhan, M.; Yang, X. N. Viscosity and structure of water and ethanol within GO nanochannels: A molecular simulation study. J. Phys. Chem. B 2020, 124, 10961–10970.

[34]

Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V. Square ice in graphene nanocapillaries. Nature 2015, 519, 443–445.

[35]

Wang, D. Y.; Tian, Y.; Jiang, L. Abnormal properties of low-dimensional confined water. Small 2021, 17, 2100788.

[36]

Sun, P. Z.; Ma, R. Z.; Bai, X. Y.; Wang, K. L.; Zhu, H. W.; Sasaki, T. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity. Sci. Adv. 2017, 3, e1602629.

[37]

Popov, I.; Ishai, P. B.; Khamzin, A.; Feldman, Y. The mechanism of the dielectric relaxation in water. Phys. Chem. Chem. Phys. 2016, 18, 13941–13953.

[38]

Bergman, R.; Swenson, J. Dynamics of supercooled water in confined geometry. Nature 2000, 403, 283–286.

[39]

Belyanchikov, M. A.; Savinov, M.; Bedran, Z. V.; Bednyakov, P.; Proschek, P.; Prokleska, J.; Abalmasov, V. A.; Petzelt, J.; Zhukova, E. S.; Thomas, V. G. et al. Dielectric ordering of water molecules arranged in a dipolar lattice. Nat. Commun. 2020, 11, 3927.

[40]

Nandi, N.; Bhattacharyya, K.; Bagchi, B. Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem. Rev. 2000, 100, 2013–2046.

[41]

Li, Y. T.; Wang, S. T.; Xiao, Z. Q.; Leng, J.; Zhang, Z. T.; Gao, T.; Tang, Z. L. Enhancing Li-ion transport in solid electrolytes by confined water. Small 2022, 18, 2201094.

[42]

Wang, S. T.; Quan, W.; Zhu, Z.; Yang, Y.; Liu, Q.; Ren, Y.; Zhang, X. Y.; Xu, R.; Hong, Y.; Zhang, Z. T. et al. Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nat. Commun. 2017, 8, 627.

[43]

Su, Y.; Prestat, E.; Hu, C. Y.; Puthiyapura, V. K.; Neek-Amal, M.; Xiao, H.; Huang, K.; Kravets, V. G.; Haigh, S. J.; Hardacre, C. et al. Self-limiting growth of two-dimensional palladium between graphene oxide layers. Nano Lett. 2019, 19, 4678–4683.

[44]

Verma, V.; Kumar, S.; Manalastas, W.; Srinivasan, M. Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 2021, 6, 1773–1785.

[45]

Gao, H. L.; Chen, S. M.; Mao, L. B.; Song, Z. Q.; Yao, H. B.; Cölfen, H.; Luo, X. S.; Zhang, F.; Pan, Z.; Meng, Y. F. et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 2017, 8, 287.

Nano Research
Pages 10913-10921
Cite this article:
Li Y, Jin X, Yan X, et al. 1D/2D composite subnanometer channels for ion transport: The role of confined water. Nano Research, 2023, 16(8): 10913-10921. https://doi.org/10.1007/s12274-023-5790-z
Topics:

1092

Views

2

Crossref

3

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 26 February 2023
Revised: 10 April 2023
Accepted: 02 May 2023
Published: 23 June 2023
© Tsinghua University Press 2023
Return