AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-atomic Zn-(C/N/O) lithiophilic sites induced stable lithium plating/stripping in anode-free lithium metal battery

Shifei Huang1,2Sirong Lu3Yao Lv1,4Nanrui Li1,2Zhenwei Wu5Geng Zhong1,2Xiaolong Ren1,2Yufeng Wang1,2Bo Sun1,2Yuxiong Huang2,6Feiyu Kang1,2( )Yidan Cao1,2( )
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
College of Sciences and Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
Shell Catalysts & Technologies, Shell Technology Center Houston, Houston TX 77082-3101, USA
Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Show Author Information

Graphical Abstract

Atomically dispersed Zn-(C/N/O) lithiophilic sites in the amorphous carbon medium were introduced onto Cu by an in-situ induced ion coordination chemistry strategy to get the modified Zn@NC@reduced graphene oxide (RGO)@Cu current collector and induce stable lithium plating/stripping in anode-free lithium metal battery.

Abstract

For anode-free lithium metal battery, lithiophilic surface modification on the current collector can effectively reduce the lithium nucleation barrier, so as to regulate the electrodeposition of lithium. Here, atomically dispersed Zn-(C/N/O) lithiophilic sites in the amorphous carbon medium were introduced onto Cu by an in-situ induced ion coordination chemistry strategy to get the modified Zn@NC@RGO@Cu current collector. X-ray absorption spectroscopy (XAS) combined with scanning transmission electron microscopy in high angle annular dark field (STEM-HAADF) analysis proved the single atomic state of the zinc sites surrounded by C, N, and O with a coordination number of ~ 3. According to the electrochemical tests and first principle calculations, the ultra-uniformly dispersed Zn-(C/N/O) sites at the atomic level can effectively improve the lithium affinity, reduce the energy barrier for lithium nucleation, homogenize the lithium nucleation, and enhance an inorganic lithium compounds rich solid electrolyte interphase layer. As a result, the nucleation overpotential of lithium on the modified current collector was reduced to 7.7 mV, which was 5.4 times lower than that on bare Cu. Uniform lithium nucleation and deposition enabled stable Li plating/stripping and elevated Coulombic efficiency of 98.95% in Li||Cu cell after > 850 cycles. Capacity retention of 89.7% was successfully achieved in the anode-free lithium metal battery after 100 cycles.

Electronic Supplementary Material

Video
12274_2023_5795_MOESM2_ESM.avi
12274_2023_5795_MOESM3_ESM.avi
12274_2023_5795_MOESM4_ESM.avi
Download File(s)
12274_2023_5795_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Brandt, L. R.; Marie, J. J.; Moxham, T.; Förstermann, D. P.; Salvati, E.; Besnard, C.; Papadaki, C.; Wang, Z. F.; Bruce, P. G.; Korsunsky, A. M. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle. Energy Environ. Sci. 2020, 13, 3556–3566.

[2]

Lv, Y.; Huang, S. F.; Zhao, Y. F.; Roy, S.; Lu, X. G.; Hou, Y. L.; Zhang, J. J. A review of nickel-rich layered oxide cathodes: Synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects. Appl. Energy 2022, 305, 117849.

[3]

Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943.

[4]

Li, P.; Hwang, J. Y.; Sun, Y. K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery. ACS Nano 2019, 13, 2624–2633.

[5]

Zhao, S. Q.; Guo, Z. Q.; Yan, K.; Wan, S. W.; He, F. R.; Sun, B.; Wang, G. X. Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater. 2021, 34, 716–734.

[6]

Zhang, H.; Yang, Y.; Ren, D. S.; Wang, L.; He, X. M. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170.

[7]

Yi, J. S.; Chen, J. H.; Yang, Z.; Dai, Y.; Li, W. M.; Cui, J.; Ciucci, F.; Lu, Z. H.; Yang, C. L. Facile patterning of laser-induced graphene with tailored Li nucleation kinetics for stable lithium-metal batteries. Adv. Energy Mater. 2019, 9, 1901796.

[8]

Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278.

[9]

Han, B.; Xu, D. W.; Chi, S. S.; He, D. S.; Zhang, Z.; Du, L. L.; Gu, M.; Wang, C. Y.; Meng, H.; Xu, K. et al. 500 Wh·kg−1 class Li metal battery enabled by a self-organized core–shell composite anode. Adv. Mater. 2020, 32, 2004793.

[10]

Wu, F. L.; Fang, S.; Kuenzel, M.; Mullaliu, A.; Kim, J. K.; Gao, X. P.; Diemant, T.; Kim, G. T.; Passerini, S. Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule 2021, 5, 2177–2194.

[11]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[12]

Chen, X. R.; Zhao, B. C.; Yan, C.; Zhang, Q. Review on Li deposition in working batteries: From nucleation to early growth. Adv. Mater. 2021, 33, 2004128.

[13]

Wen, Z. P.; Peng, Y. Y.; Cong, J. L.; Hua, H. M.; Lin, Y. X.; Xiong, J.; Zeng, J.; Zhao, J. B. A stable artificial protective layer for high capacity dendrite-free lithium metal anode. Nano Res. 2019, 12, 2535–2542.

[14]

Foroozan, T.; Soto, F. A.; Yurkiv, V.; Sharifi-Asl, S.; Deivanayagam, R.; Huang, Z. N.; Rojaee, R.; Mashayek, F.; Balbuena, P. B.; Shahbazian-Yassar, R. Synergistic effect of graphene oxide for impeding the dendritic plating of Li. Adv. Energy Mater. 2018, 28, 1705917.

[15]

Zhao, C. Z.; Chen, P. Y.; Zhang, R.; Chen, X.; Li, B. Q.; Zhang, X. Q.; Cheng, X. B.; Zhang, Q. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 2018, 4, eaat3446.

[16]

Li, G. C.; Duan, X. R.; Liu, X. T.; Zhan, R. M.; Wang, X. C.; Du, J. M.; Chen, Z. H.; Li, Y. J.; Cai, Z.; Shen, Y. et al. Locking active Li metal through localized redistribution of fluoride enabling stable Li-metal batteries. Adv. Mater. 2023, 35, 2207310.

[17]

Jiang, Z. P.; Zeng, Z. Q.; Liang, X. M.; Yang, L.; Hu, W.; Zhang, C.; Han, Z. L.; Feng, J. W.; Xie, J. Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2005991.

[18]

Zhang, H.; Zeng, Z. Q.; He, R. J.; Wu, Y. K.; Hu, W.; Lei, S.; Liu, M. C.; Cheng, S. J.; Xie, J. 1,3,5-Trifluorobenzene and fluorobenzene co-assisted electrolyte with thermodynamic and interfacial stabilities for high-voltage lithium metal battery. Energy Storage Mater. 2022, 48, 393–402.

[19]
Zhang, H.; Zeng, Z. Q.; Ma, F. F.; Wu, Q.; Wang, X. L.; Cheng, S. J.; Xie, J. Cyclopentylmethyl ether, a non-fluorinated, weakly solvating and wide temperature solvent for high-performance lithium metal battery. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202300771.
[20]

Genovese, M.; Louli, A. J.; Weber, R.; Hames, S.; Dahn, J. R. Measuring the Coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries. J. Electrochem. Soc. 2018, 165, A3321–A3325.

[21]

Gu, Y.; Xu, H. Y.; Zhang, X. G.; Wang, W. W.; He, J. W.; Tang, S.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F. et al. Lithiophilic faceted Cu (100) surfaces: High utilization of host surface and cavities for lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 3092–3096.

[22]

Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510.

[23]

Lin, L. D.; Suo, L. M.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery. Adv. Energy Mater. 2021, 11, 2003709.

[24]

Chen, W. Y.; Salvatierra, R. V.; Ren, M. Q.; Chen, J. H.; Stanford, M. G.; Tour, J. M. Laser-induced silicon oxide for anode-free lithium metal batteries. Adv. Mater. 2020, 32, 2002850.

[25]

Zhang, C.; Lv, W.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B.; Lyu, R.; Wu, H. L.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 2018, 8, 1703404.

[26]

Assegie, A. A.; Cheng, J. H.; Kuo, L. M.; Su, W. N.; Hwang, B. J. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10, 6125–6138.

[27]

Zhang, R.; Wen, S. W.; Wang, N.; Qin, K. Q.; Liu, E. Z.; Shi, C. S.; Zhao, N. Q. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv. Energy Mater. 2018, 8, 1800914.

[28]

Wang, X. C.; He, Y. F.; Tu, S. B.; Fu, L.; Chen, Z. H.; Liu, S. Y.; Cai, Z.; Wang, L.; He, X. M.; Sun, Y. M. Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Mater. 2022, 49, 135–143.

[29]

Zhou, S. H.; Huang, P.; Xiong, T. Z.; Yang, F.; Yang, H.; Huang, Y. C.; Li, D.; Deng, J. Q.; Balogun, M. S. Sub-thick electrodes with enhanced transport kinetics via in situ epitaxial heterogeneous interfaces for high areal-capacity lithium ion batteries. Small 2021, 17, 2100778.

[30]

Yang, H.; Xiong, T. Z.; Zhu, Z. X.; Xiao, R.; Yao, X. C.; Huang, Y. C.; Balogun, M. S. Deciphering the lithium storage chemistry in flexible carbon fiber-based self-supportive electrodes. Carbon Energy 2022, 4, 820–832.

[31]

Chen, X.; Chen, X. R.; Hou, T. Z.; Li, B. Q.; Cheng, X. B.; Zhang, R.; Zhang, Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 2019, 5, eaau7728.

[32]

Wang, Y. L.; Shen, Y. B.; Du, Z. L.; Zhang, X. F.; Wang, K.; Zhang, H. Y.; Kang, T.; Guo, F.; Liu, C. H.; Wu, X. D. et al. A lithium-carbon nanotube composite for stable lithium anodes. J. Mater. Chem. A 2017, 5, 23434–23439.

[33]

Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 2018, 30, 1706216.

[34]

Liu, S.; Wang, A. X.; Li, Q. Q.; Wu, J. S.; Chiou, K.; Huang, J. X.; Luo, J. Y. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2018, 2, 184–193.

[35]

Ma, Y.; Gu, Y. T.; He, Y.; Wei, L.; Lian, Y. B.; Pan, W. Y.; Li, X. J.; Su, Y. H.; Peng, Y.; Deng, Z. et al. Fast-charging and dendrite-free lithium metal anode enabled by partial lithiation of graphene aerogel. Nano Res. 2022, 15, 9792–9799.

[36]

Ye, W. B.; Pei, F.; Lan, X. N.; Cheng, Y.; Fang, X. L.; Zhang, Q. B.; Zheng, N. F.; Peng, D. L.; Wang, M. S. Stable nano-encapsulation of lithium through seed-free selective deposition for high-performance Li battery anodes. Adv. Energy Mater. 2020, 10, 1902956.

[37]

Wang, T. S.; Liu, X. B.; Zhao, X. D.; He, P. G.; Nan, C. W.; Fan, L. Z. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries. Adv. Funct. Mater. 2020, 30, 2000786.

[38]

Zhang, D.; Dai, A.; Fan, B. F.; Li, Y. G.; Shen, K.; Xiao, T.; Hou, G. Y.; Cao, H. Z.; Tao, X. Y.; Tang, Y. P. Three-dimensional ordered macro/mesoporous Cu/Zn as a lithiophilic current collector for dendrite-free lithium metal anode. ACS Appl. Mater. Interfaces 2020, 12, 31542–31551.

[39]

Yang, C. P.; Yao, Y. G.; He, S. M.; Xie, H.; Hitz, E.; Hu, L. B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 2017, 29, 1702714.

[40]

Fang, Y. J.; Zhang, S. L.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers. Sci. Adv. 2021, 7, eabg3626.

[41]

Fang, Y. J.; Zeng, Y. X.; Jin, Q.; Lu, X. F.; Luan, D. Y.; Zhang, X. T.; Lou, X. W. Nitrogen-doped amorphous Zn-carbon multichannel fibers for stable lithium metal anodes. Angew. Chem., Int. Ed. 2021, 60, 8515–8520.

[42]

Wu, H. Q.; Ang, J. M.; Kong, J. H.; Zhao, C. Y.; Du, Y. H.; Lu, X. H. One-pot synthesis of polydopamine-Zn complex antifouling coatings on membranes for ultrafiltration under harsh conditions. RSC Adv. 2016, 6, 103390–103398.

[43]

Wilker, J. J. The iron-fortified adhesive system of marine mussels. Angew. Chem., Int. Ed. 2010, 49, 8076–8078.

[44]

Sever, M. J.; Weisser, J. T.; Monahan, J.; Srinivasan, S.; Wilker, J. J. Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew. Chem., Int. Ed. 2004, 43, 448–450.

[45]

Sun, J. J.; Cheng, Y.; Zhang, H. H.; Yan, X. L.; Sun, Z. F.; Ye, W. B.; Li, W. Q.; Zhang, M. Y.; Gao, H. W.; Han, J. J. et al. Enhanced cyclability of lithium metal anodes enabled by anti-aggregation of lithiophilic seeds. Nano Lett. 2022, 22, 5874–5882.

[46]

Wei, N.; Jiang, Y. Y.; Ying, Y.; Guo, X. Y.; Wu, Y. P.; Wen, Y.; Yang, H. F. Facile construction of a polydopamine-based hydrophobic surface for protection of metals against corrosion. RSC Adv. 2017, 7, 11528–11536.

[47]

Chi, S. S.; Wang, Q. R.; Han, B.; Luo, C.; Jiang, Y. D.; Wang, J.; Wang, C. Y.; Yu, Y.; Deng, Y. H. Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 2020, 20, 2724–2732.

[48]

Neidhardt, J.; Hultman, L.; Czigány, Z. Correlated high resolution transmission electron microscopy and X-ray photoelectron spectroscopy studies of structured CNx (0 < x < 0.25) thin solid films. Carbon 2004, 42, 2729–2734.

[49]

Czigány, Z.; Hultman, L. Interpretation of electron diffraction patterns from amorphous and fullerene-like carbon allotropes. Ultramicroscopy 2010, 110, 815–819.

[50]

Liu, B.; Yang, C. M.; Liu, Z. W.; Lai, C. S. N-doped graphene with low intrinsic defect densities via a solid source doping technique. Nanomaterials 2017, 7, 302.

[51]

Song, P.; Luo, M.; Liu, X. Z.; Xing, W.; Xu, W. L.; Jiang, Z.; Gu, L. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1700802.

[52]

Huang, S. F.; Li, Z. P.; Wang, B.; Zhang, J. J.; Peng, Z. Q.; Qi, R. J.; Wang, J.; Zhao, Y. F. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 2018, 28, 1706294.

[53]

Camacho-Bunquin, J.; Aich, P.; Ferrandon, M.; “Bean” Getsoian, A.; Das, U.; Dogan, F.; Curtiss, L. A.; Miller, J. T.; Marshall, C. L.; Hock, A. S. et al. Single-site zinc on silica catalysts for propylene hydrogenation and propane dehydrogenation: Synthesis and reactivity evaluation using an integrated atomic layer deposition-catalysis instrument. J. Catal. 2017, 345, 170–182.

[54]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem. 2019, 131, 4965–4970.

[55]

Wang, J. Y.; Guan, Y. J.; Yu, X. G.; Cao, Y. Z.; Chen, J. Z.; Wang, Y. L.; Hu, B.; Jing, H. W. Photoelectrocatalytic reduction of CO2 to paraffin using p–n heterojunctions. iScience 2020, 23, 100768.

[56]

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

[57]

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. 2017, 129, 7872–7876.

[58]

Guan, X. Z.; Wang, A. X.; Liu, S.; Li, G. J.; Liang, F.; Yang, Y. W.; Liu, X. J.; Luo, J. Y. Controlling nucleation in lithium metal anodes. Small 2018, 14, 1801423.

[59]

Nai, J. W.; Zhao, X. Y.; Yuan, H. D.; Tao, X. Y.; Guo, L. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries. Nano Res. 2021, 14, 2053–2066.

[60]

Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv. Mater. 2019, 31, 1807131.

[61]

Xiang, Y. X.; Tao, M. M.; Zhong, G. M.; Liang, Z. T.; Zheng, G. R.; Huang, X.; Liu, X. S.; Jin, Y. T.; Xu, N. B.; Armand, M. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 2021, 7, eabj3423.

[62]

Liu, F.; Xu, R.; Wu, Y. C.; Boyle, D. T.; Yang, A. K.; Xu, J. W.; Zhu, Y. Y.; Ye, Y. S.; Yu, Z. A.; Zhang, Z. W. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 2021, 600, 659–663.

[63]

Rosso, M.; Brissot, C.; Teyssot, A.; Dollé, M.; Sannier, L.; Tarascon, J. M.; Bouchet, R.; Lascaud, S. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 2006, 51, 5334–5340.

[64]

Chen, X. R.; Yao, Y. X.; Yan, C.; Zhang, R.; Cheng, X. B.; Zhang, Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 7743–7747.

[65]

Liu, Q. Q.; Xu, Y. F.; Wang, J. H.; Zhao, B.; Li, Z. J.; Wu, H. B. Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 2020, 12, 176.

[66]

Liu, S. F.; Ji, X.; Piao, N.; Chen, J.; Eidson, N.; Xu, J. J.; Wang, P. F.; Chen, L.; Zhang, J. X.; Deng, T. et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem., Int. Ed. 2021, 60, 3661–3671.

[67]

Tan, J.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 2021, 11, 2100046.

[68]

Huang, W.; Wang, H. S.; Boyle, D. T.; Li, Y. Z.; Cui, Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid–electrolyte interphases by cryogenic electron microscopy. ACS Energy Lett. 2020, 5, 1128–1135.

[69]

Kim, Y. J.; Kwon, S. H.; Noh, H.; Yuk, S.; Lee, H.; soo Jin, H.; Lee, J.; Zhang, J. G.; Lee, S. G.; Guim, H. et al. Facet selectivity of Cu current collector for Li electrodeposition. Energy Storage Mater. 2019, 19, 154–162.

[70]

Xu, N.; Li, L. L.; He, Y.; Tong, Y.; Lu, Y. Y. Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries. J. Mater. Chem. A 2020, 8, 6229–6237.

[71]

Qin, L. G.; Wu, Y. C.; Shen, M. Y.; Song, B. R.; Li, Y. H.; Sun, S. Q.; Zhang, H. Y.; Liu, C. F.; Chen, J. Straining copper foils to regulate the nucleation of lithium for stable lithium metal anode. Energy Storage Mater. 2022, 44, 278–284.

[72]

Gao, X. W.; Zhou, Y. N.; Han, D. Z.; Zhou, J. Q.; Zhou, D. Z.; Tang, W.; Goodenough, J. B. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864–1879.

[73]

Shen, C.; Gu, J. L.; Li, N.; Peng, Z. L.; Xie, K. Y. Single crystal Cu (110) inducing lateral growth of electrodeposition Li for dendrite-free Li metal-based batteries. J. Power Sources 2021, 501, 229969.

Nano Research
Pages 11473-11485
Cite this article:
Huang S, Lu S, Lv Y, et al. Single-atomic Zn-(C/N/O) lithiophilic sites induced stable lithium plating/stripping in anode-free lithium metal battery. Nano Research, 2023, 16(8): 11473-11485. https://doi.org/10.1007/s12274-023-5795-7
Topics:

1376

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 23 March 2023
Revised: 29 April 2023
Accepted: 01 May 2023
Published: 03 June 2023
© Tsinghua University Press 2023
Return