Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development and utilization of marine blue energy has become the focus of current research. A drawstring triboelectric nanogenerator with modular electrodes (DS-TENG) is proposed to harvest wave energy. Motion displacement and water wave adaptability are improved by using the drawstring structure in the DS-TENG. Furthermore, the modular electrode design is applied to improve the durability and replaceability of the generation units. The rationality of the structure is verified by theoretical analysis, and performance experiments on the fundamental output, displacement and frequency, durability and application are carried out. The DS-TENG can achieve output performance of 98.03 nC, 3.63 μA, 238.50 V and 923.92 µW at 150 mm and 1.0 Hz. In addition, the performance drops by 6.11% after 110,000 cycles for DS-TENG durability. This paper will provide reference for the design of TENG that adapts to a wide range of wave heights.
Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.
Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.
Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.
Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.
Zhao, J. Q.; Zhen, G. W.; Liu, G. X.; Bu, T. Z.; Liu, W. B.; Fu, X. P.; Zhang, P.; Zhang, C.; Wang, Z. L. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 2019, 61, 111–118.
Ye, C. Y.; Dong, K.; An, J.; Yi, J.; Peng, X.; Ning, C.; Wang, Z. L. A Triboelectric–electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor. ACS Energy Lett. 2021, 6, 1443–1452.
Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.
Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.
Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.
Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.
Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.
Zhang, N.; Qin, C.; Feng, T. X.; Li, J.; Yang, Z. R.; Sun, X. P.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 2020, 13, 1903–1907.
Guo, H. Y.; Chen, J.; Yeh, M. H.; Fan, X.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 2015, 9, 5577–5584.
Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.
Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric–electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.
Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.
Han, J. J.; Liu, Y.; Feng, Y. W.; Jiang, T.; Wang, Z. L. Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv. Energy Mater. 2023, 13, 2203219.
Li, Y. H.; Guo, Z. T.; Zhao, Z. H.; Gao, Y. K.; Yang, P. Y.; Qiao, W. Y.; Zhou, L. L.; Wang, J.; Wang, Z. L. Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Appl. Energy 2023, 336, 120792.
Cheng, P.; Liu, Y. N.; Wen, Z.; Shao, H. Y.; Wei, A. M.; Xie, X. K.; Chen, C.; Yang, Y. Q.; Peng, M. F.; Zhuo, Q. Q. et al. Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 2018, 54, 156–162.
Chen, B. D.; Tang, W.; He, C.; Deng, C. R.; Yang, L. J.; Zhu, L. P.; Chen, J.; Shao, J. J.; Liu, L.; Wang, Z. L. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 2018, 21, 88–97.
Yuan, Z. Q.; Wang, C. F.; Xi, J. G.; Han, X.; Li, J.; Han, S. T.; Gao, W. C.; Pan, C. F. Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Lett. 2021, 6, 2809–2816.
Wang, Y.; Liu, X. Y.; Wang, Y. W.; Wang, H.; Wang, H.; Zhang, S. L.; Zhao, T. C.; Xu, M. Y.; Wang, Z. L. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 2021, 15, 15700–15709.
Wu, Y.; Zeng, Q. X.; Tang, Q.; Liu, W. L.; Liu, G. L.; Zhang, Y.; Wu, J.; Hu, C. G.; Wang, X. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 2020, 67, 104205.
Zhao, T. C.; Xu, M. Y.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199.
Zhang, C. G.; Zhou, L. L.; Cheng, P.; Liu, D.; Zhang, C. L.; Li, X. Y.; Li, S. X.; Wang, J.; Wang, Z. L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 2021, 11, 2003616.
Qu, Z. G.; Huang, M. K.; Chen, C. X.; An, Y.; Liu, H. Z.; Zhang, Q. P.; Wang, X. P.; Liu, Y.; Yin, W. L.; Li, X. F. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2202048.
Liu, L.; Shi, Q. F.; Lee, C. A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 2020, 76, 105052.
Zhang, S.; Jing, Z. X.; Wang, X. X.; Zhu, M. K.; Yu, X.; Zhu, J. Y.; Cheng, T. H.; Zhao, H. W.; Wang, Z. L. Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting. Nano Res. 2023, 16, 466–472.
Yin, M. F.; Lu, X. H.; Qiao, G. D.; Xu, Y. H.; Wang, Y. Q.; Cheng, T. H.; Wang, Z. L. Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 2020, 10, 2000627.
Rui, P. S.; Zhang, W.; Zhong, Y. M.; Wei, X. X.; Guo, Y. C.; Shi, S. W.; Liao, Y. L.; Cheng, J.; Wang, P. H. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 2020, 74, 104937.
Zhao, B.; Li, Z. H.; Liao, X. Q.; Qiao, L. F.; Li, Y. R.; Dong, S. L.; Zhang, Z. N.; Zhang, B. C. A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy 2021, 89, 106381.
Pang, H.; Feng, Y. W.; An, J.; Chen, P. F.; Han, J. J.; Jiang, T.; Wang, Z. L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398.
Qian, P.; Feng, B.; Wen, H. S.; Jiang, X.; Ying, Y.; Si, Y. L.; Zhang, D. H. Maximum power point tracking for triboelectric nanogenerator based wave energy converters. Nano Energy 2022, 98, 107249.
Li, J. P.; Hu, Y. L.; Wang, X. N.; He, L. D.; Ma, J. J.; Wan, N.; Wen, J. M.; Cheng, T. H. A bow-drill structured triboelectric nanogenerator for marine ranching monitoring. Adv. Mater. Technol. 2023, 8, 2201471.
Zhao, D.; Yu, X.; Wang, J. L.; Gao, Q.; Wang, Z. J.; Cheng, T. H.; Wang, Z. L. A standard for normalizing the outputs of triboelectric nanogenerators in various modes. Energy Environ. Sci. 2022, 15, 3901–3911.
Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.
Zhao, D.; Yu, X.; Wang, Z. J.; Wang, J. L.; Li, X.; Wang, Z. L.; Cheng, T. H. Universal equivalent circuit model and verification of current source for triboelectric nanogenerator. Nano Energy 2021, 89, 106335.