AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in multifunctional shape memory photonic crystals and practical applications

Yong QiShufen Zhang( )
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
Show Author Information

Graphical Abstract

The recent progress on multifunctional shape memory photonic crystals (SMPCs) is summarized to figure out the nanoscale shape memory effects on structural color conversion and additional performance, inspiring the design and fabrication of the next generation of SMPCs. The exploration of SMPCs will spark cutting-edge innovation in multidisciplinary areas such as biomedicine, chemical engineering, materials science, environmental engineering, optics, and interface engineering.

Abstract

Shape memory photonic crystals (SMPCs) are smart composite materials with changeable structural color integrated by shape memory polymer and photonic crystals. SMPC can produce one or more temporary shapes through nanoscale deformation, memorizing current states. SMPC can be recovered to their original shapes or some intermediate states under external stimuli, accompanied by the variation of structural color. As porous carriers with built-in sensing properties, SMPCs promoted the interdisciplinary development of nanophotonic technology in materials science, environmental engineering, biomedicine, chemical engineering, and mechanics. Herein, the recent progress on multifunctional SMPCs and practical applications, including traditional and cold programmable SMPCs, is summarized and discussed. The primary concern is shape programming at the nanoscale that has demonstrated numerous attractive functions, including smart sensing, ink-free printing, solvent detection, reprogrammable gradient wetting, and controllable bubble transportation, under variations of the surface nanostructure. It aims to figure out the nanoscale shape memory effects on structural color conversion and additional performance, inspiring the fabrication of the next generation of SMPCs. Finally, perspectives on future research directions and applications are also presented. It is believed that multifunctional SMPCs are powerful nanophotonic tools for the interdisciplinary development of numerous disciplines in the future.

References

[1]

Grassly, N. C.; Fraser, C.; Garnett, G. P. Host immunity and synchronized epidemics of syphilis across the United States. Nature 2005, 433, 417–421.

[2]

Durak, G. M.; Thierer, R.; Sachse, R.; Bischoff, M.; Speck, T.; Poppinga, S. Smooth or with a snap! Biomechanics of trap reopening in the venus flytrap (Dionaea muscipula). Adv. Sci. 2022, 9, 2201362.

[3]

Lendlein, A.; Gould, O. E. C. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 2019, 4, 116–133.

[4]

Teyssier, J.; Saenko, S. V.; van der Marel, D.; Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.

[5]

Schauer, S.; Baumberg, J. J.; Hölscher, H.; Smoukov, S. K. Tuning of structural colors like a chameleon enabled by shape-memory polymers. Macromol. Rapid Commun. 2018, 39, 1800518.

[6]

Wu, Y.; Wang, Y.; Zhang, S. F.; Wu, S. L. Artificial chameleon skin with super-sensitive thermal and mechanochromic response. ACS Nano 2021, 15, 15720–15729.

[7]

Lee, G. H.; Han, S. H.; Kim, J. B.; Kim, J. H.; Lee, J. M.; Kim, S. H. Colloidal photonic inks for mechanochromic films and patterns with structural colors of high saturation. Chem. Mater. 2019, 31, 8154–8162.

[8]
Hou, Z. L.; Li, X. B.; Zhang, X. R.; Zhang, W. D.; Wang, Z. L.; Zhang, H. L. A bioinspired, self-powered, flytrap-based sensor and actuator enabled by voltage triggered hydrogel electrodes. Nano Res., in press, https://doi.org/10.1007/s12274-023-5621-2.
[9]

Zhang, Z. H.; Chen, Z. Y.; Wang, Y.; Chi, J. J.; Wang, Y. T.; Zhao, Y. J. Bioinspired bilayer structural color hydrogel actuator with multienvironment responsiveness and survivability. Small Methods 2019, 3, 1900519.

[10]

Wei, J. J.; Li, R.; Li, L.; Wang, W. Q.; Chen, T. Touch-responsive hydrogel for biomimetic flytrap-like soft actuator. Nano-Micro Lett. 2022, 14, 182.

[11]

Li, H. T.; Zhu, M. J.; Tian, F.; Hua, W. Q.; Guo, J.; Wang, C. C. Polychrome photonic crystal stickers with thermochromic switchable colors for anti-counterfeiting and information encryption. Chem. Eng. J. 2021, 426, 130683.

[12]

Boott, C. E.; Soto, M. A.; Hamad, W. Y.; MacLachlan, M. J. Shape-memory photonic thermoplastics from cellulose nanocrystals. Adv. Funct. Mater. 2021, 31, 2103268.

[13]

Belmonte, A.; da Cunha, M. P.; Nickmans, K.; Schenning, A. P. H. J. Brush-paintable, temperature and light responsive triple shape-memory photonic coatings based on micrometer-sized cholesteric liquid crystal polymer particles. Adv. Opt. Mater. 2020, 8, 2000054.

[14]

Wang, X. Y.; Xu, J.; Zhang, X. R.; Yang, Z. H.; Zhang, Y. M.; Wang, T. M.; Wang, Q. H. Molecularly engineered unparalleled strength and supertoughness of poly(urea-urethane) with shape memory and clusterization-triggered emission. Adv. Mater. 2022, 34, 2205763.

[15]

Cheng, Z. J.; Zhang, D. J.; Luo, X.; Lai, H.; Liu, Y. Y.; Jiang, L. Superwetting shape memory microstructure: Smart wetting control and practical application. Adv. Mater. 2021, 33, 2001718.

[16]

Chen, G. C.; Jin, B. J.; Shi, Y. P.; Zhao, Q.; Shen, Y. Q.; Xie, T. Rapidly and repeatedly reprogrammable liquid crystalline elastomer via a shape memory mechanism. Adv. Mater. 2022, 34, 2201679.

[17]

Kolesov, I.; Dolynchuk, O.; Borreck, S.; Radusch, H. J. Morphology-controlled multiple one- and two-way shape-memory behavior of cross-linked polyethylene/poly(ε-caprolactone) blends. Polym. Adv. Technol. 2014, 25, 1315–1322.

[18]

Zhao, R. Y.; Zhao, T. P.; Jiang, X. Q.; Liu, X.; Shi, D.; Liu, C. Y.; Yang, S.; Chen, E. Q. Thermoplastic high strain multishape memory polymer: Side-chain polynorbornene with columnar liquid crystalline phase. Adv. Mater. 2017, 29, 1605908.

[19]

Lai, S. M.; Li, C. H.; Kao, H. C.; Liu, L. C. Shape memory properties of melt-blended olefin block copolymer (OBC)/ethylene-vinyl acetate blends. J. Macromol. Sci. Part B: Phys. 2019, 58, 174–191.

[20]

Du, H. Y.; Liu, L. W.; Zhang, F. H.; Zhao, W.; Leng, J. S.; Liu, Y. J. Thermal-mechanical behavior of styrene-based shape memory polymer tubes. Polym. Test. 2017, 57, 119–125.

[21]

Zheng, N.; Fang, Z. Z.; Zou, W. K.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem., Int. Ed. 2016, 55, 11421–11425.

[22]

Ecker, M.; Danda, V.; Shoffstall, A. J.; Mahmood, S. F.; Joshi-Imre, A.; Frewin, C. L.; Ware, T. H.; Capadona, J. R.; Pancrazio, J. J.; Voit, W. E. Sterilization of thiol-ene/acrylate based shape memory polymers for biomedical applications. Macromol. Mater. Eng. 2017, 302, 1600331.

[23]

Xie, T. Recent advances in polymer shape memory. Polymer 2011, 52, 4985–5000.

[24]

Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem., Int. Ed. 2019, 58, 9682–9695.

[25]

Li, T. T.; Yan, S. Z.; Gao, X. X.; Zhou, S.; Li, J.; Ma, X. D.; Yin, J.; Jiang, X. S. Photo-induced spatial gradient network for shape memory polymer with pattern-memorizing surface. Mater. Horiz. 2022, 9, 3078–3086.

[26]

Wang, Y. Z.; Cheng, Z. J.; Liu, Z. G.; Kang, H. J.; Liu, Y. Y. Cellulose nanofibers/polyurethane shape memory composites with fast water-responsivity. J. Mater. Chem. B 2018, 6, 1668–1677.

[27]

Testa, P.; Style, R. W.; Cui, J. Z.; Donnelly, C.; Borisova, E.; Derlet, P. M.; Dufresne, E. R.; Heyderman, L. J. Magnetically addressable shape-memory and stiffening in a composite elastomer. Adv. Mater. 2019, 31, 1900561.

[28]

Shao, Y. L.; Zhao, J.; Fan, Y.; Wan, Z. P.; Lu, L. S.; Zhang, Z. H.; Ming, W. H.; Ren, L. Q. Shape memory superhydrophobic surface with switchable transition between “lotus effect” to “rose petal effect”. Chem. Eng. J. 2020, 382, 122989.

[29]

Liu, Y. J.; Du, H. Y.; Liu, L. W.; Leng, J. S. Shape memory polymers and their composites in aerospace applications: A review. Smart Mater. Struct. 2014, 23, 023001.

[30]

Li, Y. F.; Wang, R. J.; Jiao, S. Z.; Lai, H.; Liu, Y. Y.; Cheng, Z. J. Beetle-inspired oil-loaded shape memory micro-arrays with switchable adhesion to both solid and liquid. Chem. Eng. J. 2023, 461, 141927.

[31]

Peterson, G. I.; Dobrynin, A. V.; Becker, M. L. Biodegradable shape memory polymers in medicine. Adv. Healthc. Mater. 2017, 6, 1700694.

[32]

Zadan, M.; Patel, D. K.; Sabelhaus, A. P.; Liao, J. H.; Wertz, A.; Yao, L. N.; Majidi, C. Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting. Adv. Mater. 2022, 34, 2200857.

[33]

Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 2016, 28, 4449–4454.

[34]

Quan, M. H.; Yang, B. W.; Wang, J. X.; Yu, H. F.; Cao, X. Y. Simultaneous microscopic structure characteristics of shape-memory effects of thermo-responsive poly(vinylidene fluoride-co-hexafluoropropylene) inverse opals. ACS Appl. Mater. Interfaces 2018, 10, 4243–4249.

[35]

Fang, Y.; Ni, Y. L.; Leo, S. Y.; Taylor, C.; Basile, V.; Jiang, P. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat. Commun. 2015, 6, 7416.

[36]

Peng, W. J.; Zhang, G. G.; Zhao, Q.; Xie, T. Autonomous off-equilibrium morphing pathways of a supramolecular shape-memory polymer. Adv. Mater. 2021, 33, 2102473.

[37]

Xu, H. X.; Yu, C. J.; Wang, S. D.; Malyarchuk, V.; Xie, T.; Rogers, J. A. Deformable, programmable, and shape-memorizing micro-optics. Adv. Funct. Mater. 2013, 23, 3299–3306.

[38]

Wang, W. T.; Zhou, Y. C.; Yang, L.; Yang, X. P.; Yao, Y. Y.; Meng, Y.; Tang, B. T. Stimulus-responsive photonic crystals for advanced security. Adv. Funct. Mater. 2022, 32, 2204744.

[39]

Cai, Z. Y.; Li, Z. W.; Ravaine, S.; He, M. X.; Song, Y. L.; Yin, Y. D.; Zheng, H. B.; Teng, J. H.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951.

[40]

Wu, S. L.; Xia, H. B.; Xu, J. H.; Sun, X. Q.; Liu, X. G. Manipulating luminescence of light emitters by photonic crystals. Adv. Mater. 2018, 30, 1803362.

[41]

Fang, Y.; Ni, Y. L.; Leo, S. Y.; Wang, B. C.; Basile, V.; Taylor, C.; Jiang, P. Direct writing of three-dimensional macroporous photonic crystals on pressure-responsive shape memory polymers. ACS Appl. Mater. Interfaces 2015, 7, 23650–23659.

[42]

Wang, Y. L.; Zhao, Q. L.; Du, X. M. Inkless multi-color writing and copying of laser-programmable photonic crystals. Mater. Horiz. 2020, 7, 1341–1347.

[43]

Xie, Y.; Meng, Y.; Wang, W. X.; Zhang, E.; Leng, J. S.; Pei, Q. B. Bistable and reconfigurable photonic crystals-electroactive shape memory polymer nanocomposite for ink-free rewritable paper. Adv. Funct. Mater. 2018, 28, 1802430.

[44]

Wu, P.; Shen, X. Q.; Schäfer, C. G.; Pan, J.; Guo, J.; Wang, C. C. Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring. Nanoscale 2019, 11, 20015–20023.

[45]

Wang, Y.; Zhang, Z. H.; Chen, H. X.; Zhang, H.; Zhang, H.; Zhao, Y. J. Bio-inspired shape-memory structural color hydrogel film. Sci. Bull. 2022, 67, 512–519.

[46]

Qi, Y.; Yang, H.; Zhang, S. F. Bubble evolution and manipulation revealed by reconfigurable shape-memory photonic crystals with tunable wettability. Chem. Eng. J. 2022, 428, 130859.

[47]

Qi, Y.; Niu, W. B.; Zhang, S. F.; Wu, S. L.; Chu, L.; Ma, W.; Tang, B. T. Encoding and decoding of invisible complex information in a dual-response bilayer photonic crystal with tunable wettability. Adv. Funct. Mater. 2019, 29, 1906799.

[48]

Leo, S. Y.; Zhang, W.; Zhang, Y. F.; Ni, Y. L.; Jiang, H.; Jones, C.; Jiang, P.; Basile, V.; Taylor, C. Chromogenic photonic crystal sensors enabled by multistimuli-responsive shape memory polymers. Small 2018, 14, 1703515.

[49]

Yi, H.; Lee, S. H.; Ko, H.; Lee, D.; Bae, W. G.; Kim, T. I.; Hwang, D. S.; Jeong, H. E. Ultra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivative. Adv. Funct. Mater. 2019, 29, 1902720.

[50]

Chen, X. D.; Han, G. Q.; Ren, P.; Lyu, Q. Q.; Li, M. M.; Zhang, L. B.; Zhu, J. T. Shape memory photonic gels enable reversible regulation of photoluminescence: Towards multiple anti-counterfeiting. Chem. Eng. J. 2022, 446, 136879.

[51]

Hsieh, C. H.; Lu, Y. C.; Yang, H. T. Self-assembled mechanochromic shape memory photonic crystals by doctor blade coating. ACS Appl. Mater. Interfaces 2020, 12, 36478–36484.

[52]

Kim, J. H.; Lee, G. H.; Kim, J. B.; Kim, S. H. Macroporous hydrogels for fast and reversible switching between transparent and structurally colored states. Adv. Funct. Mater. 2020, 30, 2001318.

[53]

Fang, Y.; Ni, Y. L.; Choi, B.; Leo, S. Y.; Gao, J.; Ge, B.; Taylor, C.; Basile, V.; Jiang, P. Chromogenic photonic crystals enabled by novel vapor-responsive shape-memory polymers. Adv. Mater. 2015, 27, 3696–3704.

[54]

Fang, Y.; Leo, S. Y.; Ni, Y. L.; Wang, J. Y.; Wang, B. C.; Yu, L.; Dong, Z.; Dai, Y. Q.; Basile, V.; Taylor, C. et al. Reconfigurable photonic crystals enabled by multistimuli-responsive shape memory polymers possessing room temperature shape processability. ACS Appl. Mater. Interfaces 2017, 9, 5457–5467.

[55]

Zare, M.; Prabhakaran, M. P.; Parvin, N.; Ramakrishna, S. Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications. Chem. Eng. J. 2019, 374, 706–720.

[56]

Fan, G. L.; Wang, S. W.; Jiang, J. Q.; Liu, Z. T.; Liu, Z. W.; Li, G. Rubber-like composites with tunable thermal- and photo-responsive shape memory properties. Chem. Eng. J. 2022, 447, 137534.

[57]

Elliott, L. V.; Salzman, E. E.; Greer, J. R. Stimuli responsive shape memory microarchitectures. Adv. Funct. Mater. 2021, 31, 2008380.

[58]

Qi, Y.; Zhang, S. F.; Lu, A. H. Responsive structural colors derived from geometrical deformation of synthetic nanomaterials. Small Struct. 2022, 3, 2200101.

[59]

Wu, P. P.; Guo, J. S.; Jiang, K. J.; Wang, J. X.; Jiang, L. Direct water-writing/electroerasing pattern on PEDOT inverse opals. Adv. Funct. Mater. 2019, 29, 1808473.

[60]

Shang, Y. X.; Chen, Z. Y.; Fu, F. F.; Sun, L. Y.; Shao, C. M.; Jin, W.; Liu, H.; Zhao, Y. J. Cardiomyocyte-driven structural color actuation in anisotropic inverse opals. ACS Nano 2019, 13, 796–802.

[61]

Zhou, C. T.; Qi, Y.; Zhang, S. F.; Niu, W. B.; Wu, S. L.; Ma, W.; Tang, B. T. Fast water-response double-inverse opal films with brilliant structural color. Chem. Eng. J. 2021, 426, 131213.

[62]

Wang, W.; Shen, D. F.; Li, X.; Yao, Y.; Lin, J. P.; Wang, A.; Yu, J.; Wang, Z. L.; Hong, S. W.; Lin, Z. Q. et al. Light-driven shape-memory porous films with precisely controlled dimensions. Angew. Chem., Int. Ed. 2018, 57, 2139–2143.

[63]

Hong, W.; Yuan, Z. K.; Chen, X. D. Structural color materials for optical anticounterfeiting. Small 2020, 16, 1907626.

[64]

Hu, J. L.; Chen, S. J. A review of actively moving polymers in textile applications. J. Mater. Chem. 2010, 20, 3346–3355.

[65]

Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267–270.

[66]

Lendlein, A.; Kelch, S. Shape-memory polymers. 3.0.CO;2-M">Angew. Chem., Int. Ed. 2002, 41, 2034–2057.

[67]

Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713.

[68]

Xie, H.; Yang, K. K.; Wang, Y. Z. Photo-cross-linking: A powerful and versatile strategy to develop shape-memory polymers. Prog. Polym. Sci. 2019, 95, 32–64.

[69]

Du, W. N.; Jin, Y.; Shi, L. J.; Shen, Y. C.; Lai, S. Q.; Zhou, Y. T. NIR-light-induced thermoset shape memory polyurethane composites with self-healing and recyclable functionalities. Compos. Part B: Eng. 2020, 195, 108092.

[70]

Neffe, A. T.; Löwenberg, C.; Julich-Gruner, K. K.; Behl, M.; Lendlein, A. Thermally-induced shape-memory behavior of degradable gelatin-based networks. Int. J. Mol. Sci. 2021, 22, 5892.

[71]

Yan, N. N.; Zheng, Z. Y.; Liu, Y. L.; Jiang, X. Z.; Wu, J. M.; Feng, M.; Xu, L.; Guan, Q. B.; Li, H. T. Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials. Nano Res. 2022, 15, 1383–1392.

[72]

Li, Y. Y.; Wang, D. Q.; Wen, J.; Liu, J. M.; Zhang, D. Y.; Li, J. S.; Chu, H. T. Ultra-stretchable, variable modulus, shape memory multi-purpose low hysteresis hydrogel derived from solvent-induced dynamic micelle sea-island structure. Adv. Funct. Mater. 2021, 31, 2011259.

[73]

Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; Li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S. pH-induced shape-memory polymers. Macromol. Rapid Commun. 2012, 33, 1055–1060.

[74]

Fang, Y.; Leo, S. Y.; Ni, Y. L.; Yu, L.; Qi, P. X.; Wang, B. C.; Basile, V.; Taylor, C.; Jiang, P. Optically bistable macroporous photonic crystals enabled by thermoresponsive shape memory polymers. Adv. Opt. Mater. 2015, 3, 1509–1516.

[75]

Guo, H. S.; Puttreddy, R.; Salminen, T.; Lends, A.; Jaudzems, K.; Zeng, H.; Priimagi, A. Halogen-bonded shape memory polymers. Nat. Commun. 2022, 13, 7436.

[76]

Gao, H.; Li, J. R.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. The research status and challenges of shape memory polymer-based flexible electronics. Mater. Horiz. 2019, 6, 931–944.

[77]

Delaey, J.; Dubruel, P.; Van Vlierberghe, S. Shape-memory polymers for biomedical applications. Adv. Funct. Mater. 2020, 30, 1909047.

[78]

Kou, D. H.; Zhang, S. F.; Lutkenhaus, J. L.; Wang, L.; Tang, B. T.; Ma, W. Porous organic/inorganic hybrid one-dimensional photonic crystals for rapid visual detection of organic solvents. J. Mater. Chem. C 2018, 6, 2704–2711.

[79]

Zhang, J. T.; Wang, L. L.; Luo, J.; Tikhonov, A.; Kornienko, N.; Asher, S. A. 2-D array photonic crystal sensing motif. J. Am. Chem. Soc. 2011, 133, 9152–9155.

[80]

Li, C.; Zhao, M. X.; Zhou, X.; Li, H. Z.; Wang, Y.; Hu, X. T.; Li, M. Z.; Shi, L.; Song, Y. L. Janus structural color from a 2D photonic crystal hybrid with a Fabry–Perot cavity. Adv. Opt. Mater. 2018, 6, 1800651.

[81]

Armstrong, E.; O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures-fundamentals and applications from optics to energy storage. J. Mater. Chem. C 2015, 3, 6109–6143.

[82]

Cai, Z. Y.; Smith, N. L.; Zhang, J. T.; Asher, S. A. Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 2015, 87, 5013–5025.

[83]

Ge, J. P.; Yin, Y. D. Responsive photonic crystals. Angew. Chem., Int. Ed. 2011, 50, 1492–1522.

[84]

Aguirre, C. I.; Reguera, E.; Stein, A. Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 2010, 20, 2565–2578.

[85]

Niu, W. B.; Cao, X. F.; Wang, Y. P.; Yao, B. W.; Zhao, Y. S.; Cheng, J.; Wu, S. L.; Zhang, S. F.; He, X. M. Photonic vitrimer elastomer with self-healing, high toughness, mechanochromism, and excellent durability based on dynamic covalent bond. Adv. Funct. Mater. 2021, 31, 2009017.

[86]

Niu, W. B.; Zhao, K.; Qu, L. C.; Zhang, S. F. Rewritable and highly stable photonic patterns for optical storage and display enabled by direct-pressure-programmed shape memory photonic crystals. J. Mater. Chem. C 2018, 6, 8385–8394.

[87]

Wang, C. Y.; Li, F. Y.; Bi, Y. H.; Guo, W. W. Reversible modulation of 2D photonic crystals with a responsive shape-memory DNA hydrogel film. Adv. Mater. Interfaces 2019, 6, 1900556.

[88]

Cheng, J.; Zhang, L. L.; Zhao, K.; Wang, Y. P.; Cao, X. F.; Zhang, S. F.; Niu, W. B. Flexible multifunctional photonic crystal fibers with shape memory capability for optical waveguides and electrical sensors. Ind. Eng. Chem. Res. 2021, 60, 8442–8450.

[89]

Guo, T. T.; Yu, X. L.; Zhao, Y. H.; Yuan, X. Y.; Li, J. Y.; Ren, L. X. Structure memory photonic crystals prepared by hierarchical self-assembly of semicrystalline bottlebrush block copolymers. Macromolecules 2020, 53, 3602–3610.

[90]

Luo, W.; Cui, Q.; Fang, K.; Chen, K.; Ma, H. R.; Guan, J. G. Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett. 2020, 20, 803–811.

[91]

Zhang, Y. G.; Qi, Y.; Wang, R. Z.; Cao, T.; Ma, W.; Zhang, S. F. Nonintrusively adjusting structural colors of sealed two-dimensional photonic crystals: Immediate transformation between transparency and intense iridescence and their applications. ACS Appl. Mater. Interfaces 2021, 13, 13861–13871.

[92]

Ji, C. P.; Chen, M.; Wu, L. M. Patternable and rewritable retroreflective structural color shape memory polymers. Adv. Opt. Mater. 2021, 9, 2100739.

[93]

Li, J. Q.; Han, X.; Li, W.; Yang, L.; Li, X.; Wang, L. Q. Nature-inspired reentrant surfaces. Prog. Mater. Sci. 2023, 133, 101064.

[94]

Cai, Z. Y.; Luck, L. A.; Punihaole, D.; Madura, J. D.; Asher, S. A. Photonic crystal protein hydrogel sensor materials enabled by conformationally induced volume phase transition. Chem. Sci. 2016, 7, 4557–4562.

[95]

Cai, Z. Y.; Sasmal, A.; Liu, X. Y.; Asher, S. A. Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection. ACS Sens. 2017, 2, 1474–1481.

[96]

Cai, Z. Y.; Kwak, D. H.; Punihaole, D.; Hong, Z. M.; Velankar, S. S.; Liu, X. Y.; Asher, S. A. A photonic crystal protein hydrogel sensor for Candida albicans. Angew. Chem., Int. Ed. 2015, 54, 13036–13040.

[97]

Espinha, A.; Serrano, M. C.; Blanco, Á.; López, C. Thermoresponsive shape-memory photonic nanostructures. Adv. Opt. Mater. 2014, 2, 516–521.

[98]

Zhang, Z. H.; Chen, Z. Y.; Sun, L. Y.; Zhang, X. X.; Zhao, Y. J. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 2019, 12, 1579–1584.

[99]

Xiao, J. J.; Lin, S. X.; Cai, Z. H.; Muhmood, T.; Hu, X. B. Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4776–4782.

[100]
Zhang, J. H.; Zhang, Y.; Wang, Y. C.; Rencus-Lazar, S.; Mei, D. Q.; Gazit, E.; Tao, K. Bio-organic adaptive photonic crystals enable supramolecular solvatochromism. Nano Res., in press, https://doi.org/10.1007/s12274-022-5331-1.
[101]

Shang, L. R.; Zhang, W. X.; Xu, K.; Zhao, Y. J. Bio-inspired intelligent structural color materials. Mater. Horiz. 2019, 6, 945–958.

[102]

Leverant, C. J.; Leo, S. Y.; Cordoba, M. A.; Zhang, Y. F.; Charpota, N.; Taylor, C.; Jiang, P. Reconfigurable anticounterfeiting coatings enabled by macroporous shape memory polymers. ACS Appl. Polym. Mater. 2019, 1, 36–46.

[103]

Wang, Y.; Aurelio, D.; Li, W. Y.; Tseng, P.; Zheng, Z. Z.; Li, M.; Kaplan, D. L.; Liscidini, M.; Omenetto, F. G. Modulation of multiscale 3D lattices through conformational control: Painting silk inverse opals with water and light. Adv. Mater. 2017, 29, 1702769.

[104]

Liu, C. H.; Ding, H. B.; Wu, Z. Q.; Gao, B. B.; Fu, F. F.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Tunable structural color surfaces with visually self-reporting wettability. Adv. Funct. Mater. 2016, 26, 7937–7942.

[105]

Couturier, J. P.; Sütterlin, M.; Laschewsky, A.; Hettrich, C.; Wischerhoff, E. Responsive inverse opal hydrogels for the sensing of macromolecules. Angew. Chem., Int. Ed. 2015, 54, 6641–6644.

[106]

Yu, S. Z.; Niu, W. B.; Wu, S. L.; Ma, W.; Zhang, S. F. Robust and flexible thermal-plasticizing 3D shaped composite films with invariable and brilliant structural color. J. Mater. Chem. C 2018, 6, 12814–12821.

[107]

Chang, P. N.; Niu, W. B.; Qu, L. C.; Zhang, S. F. Two-way rewritable and stable photonic patterns enabled by near-infrared laser-responsive shape memory photonic crystals. J. Mater. Chem. C 2019, 7, 1896–1903.

[108]

Zhou, C. T.; Qi, Y.; Zhang, S. F.; Niu, W. B.; Wu, S. L.; Ma, W.; Tang, B. T. Water rewriteable double-inverse opal photonic crystal films with ultrafast response time and robust writing capability. Chem. Eng. J. 2022, 439, 135761.

[109]

Du, X. M.; Li, T. Y.; Li, L. J.; Zhang, Z. C.; Wu, T. Z. Water as a colorful ink: Transparent, rewritable photonic coatings based on colloidal crystals embedded in chitosan hydrogel. J. Mater. Chem. C 2015, 3, 3542–3546.

[110]

Yu, S. Z.; Cao, X.; Niu, W. B.; Wu, S. L.; Ma, W.; Zhang, S. F. Large-area and water rewriteable photonic crystal films obtained by the thermal assisted air–liquid interface self assembly. ACS Appl. Mater. Interfaces 2019, 11, 22777–22785.

[111]

Liao, J. L.; Zhu, C.; Gao, B. B.; Zhao, Z.; Liu, X. J.; Tian, L.; Zeng, Y.; Zhou, X. L.; Xie, Z. Y.; Gu, Z. Z. Multiresponsive elastic colloidal crystals for reversible structural color patterns. Adv. Funct. Mater. 2019, 29, 1902954.

[112]

Leverant, C. J.; Zhang, Y. F.; Cordoba, M. A.; Leo, S. Y.; Charpota, N.; Taylor, C.; Jiang, P. Macroporous superhydrophobic coatings with switchable wettability enabled by smart shape memory polymers. Adv. Mater. Interfaces 2021, 8, 2002111.

[113]

Niu, W. B.; Qu, L. C.; Lyv, R. W.; Zhang, S. F. Reconfigurable photonic crystals with optical bistability enabled by “cold” programming and thermo-recoverable shape memory polymers. RSC Adv. 2017, 7, 22461–22467.

[114]

Liu, W. K.; Wang, A.; Yang, R. B.; Wu, H. C.; Shao, S. R.; Chen, J. L.; Ma, Y.; Li, Z.; Wang, Y. C.; He, X. L. et al. Water-triggered stiffening of shape-memory polyurethanes composed of hard backbone dangling PEG soft segments. Adv. Mater. 2022, 34, 2201914.

[115]

Sun, Y. D.; Wang, Y. P.; Liu, Y.; Wu, S. L.; Zhang, S. F.; Niu, W. B. Biomimetic chromotropic photonic-ionic skin with robust resilience, adhesion, and stability. Adv. Funct. Mater. 2022, 32, 2204467.

[116]

Wang, X. Y.; Qi, Y.; Zhang, S. F.; Niu, W. B.; Ma, W.; Wu, S. L.; Tang, B. T. Mechanical nondiscoloring and antistretching photonic crystal films based on Zn2+ coordination and hydroxypropyl methylcellulose. J. Appl. Polym. Sci. 2021, 138, 49916.

[117]

Guan, Y.; Li, H. Y.; Zhang, S. F.; Niu, W. B. Mechanochromic photonic vitrimer thermal management device based on dynamic covalent bond. Adv. Funct. Mater. 2023, 33, 2215055.

[118]

Han, P.; He, X. Y.; Zhang, Y. X.; Zhou, H. Y.; Liu, M. J.; Wu, N.; Jiang, J. K.; Wei, Y.; Yao, X.; Zhou, J. M. et al. Cascade-microphase-separation-induced hierarchical photonic structures in supramolecular organogel for deformation-insensitive structural colors. Adv. Opt. Mater. 2019, 7, 1801749.

[119]
Peng, L.; Hou, L.; Wu, P. Y. Synergetic lithium and hydrogen bonds endow liquid-free photonic ionic elastomer with mechanical robustness and electrical/optical dual-output. Adv. Mater. 2023, 35, 2211342.
[120]

Lee, G. H.; Choi, T. M.; Kim, B.; Han, S. H.; Lee, J. M.; Kim, S. H. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 2017, 11, 11350–11357.

[121]

Phillips, K. R.; Vogel, N.; Burgess, I. B.; Perry, C. C.; Aizenberg, J. Directional wetting in anisotropic inverse opals. Langmuir 2014, 30, 7615–7620.

[122]

Phillips, K. R.; Vogel, N.; Hu, Y. H.; Kolle, M.; Perry, C. C.; Aizenberg, J. Tunable anisotropy in inverse opals and emerging optical properties. Chem. Mater. 2014, 26, 1622–1628.

[123]

Leo, S. Y.; Ni, Y. L.; Xu, C.; Zhang, Y. F.; Dai, Y. Q.; Qi, P. X.; Xie, A. T.; Basile, V.; Taylor, C.; Jiang, P. Programmable macroporous photonic crystals enabled by swelling-induced all-room-temperature shape memory effects. Adv. Funct. Mater. 2017, 27, 1703522.

[124]

Ni, Y. L.; Zhang, Y. F.; Leo, S. Y.; Fang, Y.; Zhao, M. Z.; Yu, L.; Schulze, K. D.; Sawyer, W. G.; Angelini, T. E.; Jiang, P. et al. Unconventional shape memory mechanisms of nanoporous polymer photonic crystals: Implications for nano-optical coatings and devices. ACS Appl. Nano Mater. 2018, 1, 6081–6090.

[125]

Salvekar, A. V.; Huang, W. M.; Xiao, R.; Wong, Y. S.; Venkatraman, S. S.; Tay, K. H.; Shen, Z. X. Water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly(ethylene glycol) (PEG) hydrogel. Acc. Chem. Res. 2017, 50, 141–150.

[126]

Quitmann, D.; Gushterov, N.; Sadowski, G.; Katzenberg, F.; Tiller, J. C. Environmental memory of polymer networks under stress. Adv. Mater. 2014, 26, 3441–3444.

[127]

Löwenberg, C.; Balk, M.; Wischke, C.; Behl, M.; Lendlein, A. Shape-memory hydrogels: Evolution of structural principles to enable shape switching of hydrophilic polymer networks. Acc. Chem. Res. 2017, 50, 723–732.

[128]

Qi, Y.; Kou, D. H.; Sun, Y. D.; Hu, T.; Yuan, H.; Zhou, C. T.; Li, C.; Lu, A. H.; Wu, S. L.; Zhang, S. F. Portable colorimetric photonic indicator for ethanol concentration sensing. Chem. Eng. J. 2023, 457, 141184.

[129]

Qi, Y.; Song, L. J.; Zhou, C. T.; Zhang, S. F. Hydration activates dual-confined shape-memory effects of cold-reprogrammable photonic crystals. Adv. Mater. 2023, 35, 2210753.

[130]

Sun, Y.; Le, X. X.; Zhou, S. Y.; Chen, T. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv. Mater. 2022, 34, 2201262.

[131]

Xuan, Z. Y.; Li, J. Y.; Liu, Q. Q.; Yi, F.; Wang, S. W.; Lu, W. Artificial structural colors and applications. Innovation 2021, 2, 100081.

[132]

Lin, R. C.; Qi, Y.; Kou, D. H.; Ma, W.; Zhang, S. F. Bio-inspired wrinkled photonic elastomer with superior controllable and mechanically stable structure for multi-mode color display. Adv. Funct. Mater. 2022, 32, 2207691.

[133]

Li, L. J.; Chen, Z. Y.; Shao, C. M.; Sun, L. Y.; Sun, L. Y.; Zhao, Y. J. Graphene hybrid anisotropic structural color film for cardiomyocytes’ monitoring. Adv. Funct. Mater. 2020, 30, 1906353.

[134]

Li, Z. W.; Liu, Y.; Marin, M.; Yin, Y. D. Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Res. 2020, 13, 1882–1888.

[135]

Wu, K.; Zhu, T.; Zhu, L. L.; Sun, Y.; Chen, K.; Chen, J. R.; Yuan, H. Z.; Wang, Y. Q.; Zhang, J. Y.; Liu, G. et al. Reversible mechanochromisms via manipulating surface wrinkling. Nano Lett. 2022, 22, 2261–2269.

[136]

Yang, Y.; Chen, Y.; Hou, Z. Y.; Li, F.; Xu, M. J.; Liu, Y. Y.; Tian, D.; Zhang, L. B.; Xu, J. P.; Zhu, J. T. Responsive photonic crystal microcapsules of block copolymers with enhanced monochromaticity. ACS Nano 2020, 14, 16057–16064.

[137]

Kim, Y. G.; Park, S.; Choi, Y. H.; Han, S. H.; Kim, S. H. Elastic photonic microcapsules containing colloidal crystallites as building blocks for macroscopic photonic surfaces. ACS Nano 2021, 15, 12438–12448.

[138]

Zhao, T. H.; Jacucci, G.; Chen, X.; Song, D. P.; Vignolini, S.; Parker, R. M. Angular-independent photonic pigments via the controlled micellization of amphiphilic bottlebrush block copolymers. Adv. Mater. 2020, 32, 2002681.

[139]

Liu, Q. J.; Li, Y. L.; Xu, J. C.; Lu, H. F.; Li, Y. S.; Song, D. P. Self-assembled photonic microsensors with strong aggregation-induced emission for ultra-trace quantitative detection. ACS Nano 2021, 15, 5534–5544.

[140]

Chu, G.; Qu, D.; Camposeo, A.; Pisignano, D.; Zussman, E. When nanocellulose meets diffraction grating: Freestanding photonic paper with programmable optical coupling. Mater. Horiz. 2020, 7, 511–519.

[141]

Choi, J.; Hua, M. T.; Lee, S. Y.; Jo, W.; Lo, C. Y.; Kim, S. H.; Kim, H. T.; He, X. M. Hydrocipher: Bioinspired dynamic structural color-based cryptographic surface. Adv. Opt. Mater. 2020, 8, 1901259.

[142]

Díaz-Marín, C. D.; Li, D.; Vázquez-Cosme, F. J.; Pajovic, S.; Cha, H.; Song, Y.; Kilpatrick, C.; Vaartstra, G.; Wilson, C. T.; Boriskina, S. et al. Capillary transfer of self-assembled colloidal crystals. Nano Lett. 2023, 23, 1888–1896.

[143]

Lai, X. T.; Ren, Q.; Vogelbacher, F.; Sha, W. E. I.; Hou, X. Y.; Yao, X.; Song, Y. L.; Li, M. Z. Bioinspired quasi-3D multiplexed anti-counterfeit imaging via self-assembled and nanoimprinted photonic architectures. Adv. Mater. 2022, 34, 2107243.

[144]

Qi, Y.; Chu, L.; Niu, W. B.; Tang, B. T.; Wu, S. L.; Ma, W.; Zhang, S. F. New encryption strategy of photonic crystals with bilayer inverse heterostructure guided from transparency response. Adv. Funct. Mater. 2019, 29, 1903743.

[145]

Zhan, Y.; Wang, Y.; Cheng, Q. F.; Li, C.; Li, K. X.; Li, H. Z.; Peng, J. S.; Lu, B.; Wang, Y.; Song, Y. L. et al. A butterfly-inspired hierarchical light-trapping structure towards a high-performance polarization-sensitive perovskite photodetector. Angew. Chem., Int. Ed. 2019, 58, 16456–16462.

[146]

Wang, Z. Z.; Meng, F. T.; Zhang, S. F.; Meng, Y.; Wu, S. L.; Tang, B. T. Robust, portable, and specific water-response silk film with noniridescent pattern encryption for information security. ACS Appl. Mater. Interfaces 2020, 12, 56413–56423.

[147]

Wang, Z. Z.; Zhang, S. F.; Tang, B. T. Environmentally friendly optical multi-color rewritable paper based on inverse photonic glass. Dyes Pigments 2022, 206, 110589.

[148]

Zhou, C. T.; Qi, Y.; Zhang, S. F.; Niu, W. B.; Wu, S. L.; Ma, W.; Tang, B. T. Lotus seedpod inspiration: Particle-nested double-inverse opal films with fast and reversible structural color switching for information security. ACS Appl. Mater. Interfaces 2021, 13, 26384–26393.

[149]

Liu, H.; Xu, C.; Xia, Q. D.; Ying, Y. B.; Li, Q.; Zhao, X. Y.; Zhang, Y. J.; Yang, S. K. Tailorable and angle-independent colors from synthetic brochosomes. ACS Nano 2023, 17, 2257–2265.

[150]

Huang, W. P.; Qian, H. L.; Wang, J.; Ren, K. F.; Ji, J. Periodic stratified porous structures in dynamic polyelectrolyte films through standing-wave optical crosslinking for structural color. Adv. Sci. 2021, 8, 2100402.

[151]

Aeby, S.; Aubry, G. J.; Muller, N.; Scheffold, F. Scattering from controlled defects in woodpile photonic crystals. Adv. Opt. Mater. 2021, 9, 2001699.

[152]

Kou, D. H.; Lin, R. C.; Li, C.; Zhang, S. F.; Ma, W. Bioinspired bowl-array enabled angle-independent and fast responsive photonic colors for environmental sensing. Chem. Eng. J. 2022, 430, 132805.

[153]

Chen, H.; Zhu, H.; Wang, Y. Q.; Liu, J. R.; Wang, Y.; Hu, X. H.; Solovev, A. A.; Huang, G. S.; Mei, Y. F. Structural coloration by internal reflection and interference in hydrogel microbubbles and their precursors. Adv. Opt. Mater. 2021, 9, 2100259.

[154]

Song, L. J.; Qi, Y.; Zhang, S. F. Design and self-assembly of polyhedron particles to construct iridescent structural colors. ACS Macro Lett. 2022, 11, 1362–1365.

[155]

Lee, H. J.; Park, S.; Kim, J. B.; Kim, S. H. Designing 3D polymeric structures through capillary wetting on colloidal monolayer. Adv. Funct. Mater. 2023, 33, 2208402.

[156]

Siegwardt, L.; Gallei, M. Complex 3D-printed mechanochromic materials with iridescent structural colors based on core–shell particles. Adv. Funct. Mater. 2023, 33, 2213099.

[157]

Qin, M.; Li, J. S.; Song, Y. L. Toward high sensitivity: Perspective on colorimetric photonic crystal sensors. Anal. Chem. 2022, 94, 9497–9507.

[158]

Xiao, M.; Mao, J.; Kollosche, M.; Hwang, V.; Clarke, D. R.; Manoharan, V. N. Voltage-tunable elastomer composites that use shape instabilities for rapid structural color changes. Mater. Horiz. 2022, 9, 1954–1961.

[159]

Wu, Y.; Sun, R. K.; Ren, J.; Zhang, S. F.; Wu, S. L. Bioinspired dynamic camouflage in programmable thermochromic-patterned photonic films for sophisticated anti-counterfeiting. Adv. Funct. Mater. 2023, 33, 2210047.

[160]

Qi, Y.; Zhou, C. T.; Qiu, Y. S.; Cao, X. F.; Niu, W. B.; Wu, S. L.; Zheng, Y. G.; Ma, W.; Ye, H. F.; Zhang, S. F. Biomimetic Janus photonic soft actuator with structural color self-reporting. Mater. Horiz. 2022, 9, 1243–1252.

[161]

Zhu, C. N.; Bai, T. W.; Wang, H.; Ling, J.; Huang, F. H.; Hong, W.; Zheng, Q.; Wu, Z. L. Dual-encryption in a shape-memory hydrogel with tunable fluorescence and reconfigurable architecture. Adv. Mater. 2021, 33, 2102023.

[162]

Chen, H. X.; Bian, F. K.; Sun, L. Y.; Zhang, D. G.; Shang, L. R.; Zhao, Y. J. Hierarchically molecular imprinted porous particles for biomimetic kidney cleaning. Adv. Mater. 2020, 32, 2005394.

[163]

Zhang, Y.; Zhang, L. D.; Zhang, C. Q.; Wang, J. X.; Liu, J. C.; Ye, C. Q.; Dong, Z. C.; Wu, L.; Song, Y. L. Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing. Nat. Commun. 2022, 13, 7095.

[164]

Wang, C.; Lin, X.; Schäfer, C. G.; Hirsemann, S.; Ge, J. P. Spray synthesis of photonic crystal based automotive coatings with bright and angular-dependent structural colors. Adv. Funct. Mater. 2021, 31, 2008601.

[165]

Li, Y. C.; Fan, Q. S.; Wang, X. H.; Liu, G. J.; Chai, L. Q.; Zhou, L.; Shao, J. Z.; Yin, Y. D. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles. Adv. Funct. Mater. 2021, 31, 2010746.

[166]

He, Y. Y.; Liu, L. Y.; Fu, Q. Q.; Ge, J. P. Precise assembly of highly crystalline colloidal photonic crystals inside the polyester yarns: A spray coating synthesis for breathable and durable fabrics with saturated structural colors. Adv. Funct. Mater. 2022, 32, 2200330.

[167]

Iwata, R.; Zhang, L. N.; Wilke, K. L.; Gong, S.; He, M. F.; Gallant, B. M.; Wang, E. N. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting. Joule 2021, 5, 887–900.

[168]

Madanu, T. L.; Mouchet, S. R.; Deparis, O.; Liu, J.; Li, Y.; Su, B. L. Tuning and transferring slow photons from TiO2 photonic crystals to BiVO4 nanoparticles for unprecedented visible light photocatalysis. J. Colloid Interface Sci. 2023, 634, 290–299.

[169]

Clough, J. M.; van der Gucht, J.; Kodger, T. E.; Sprakel, J. Cephalopod-inspired high dynamic range mechano-imaging in polymeric materials. Adv. Funct. Mater. 2020, 30, 2002716.

[170]

Meng, F. T.; Ju, B. Z.; Wang, Z. Z.; Han, R. H.; Zhang, Y.; Zhang, S. F.; Wu, P.; Tang, B. T. Bioinspired polypeptide photonic films with tunable structural color. J. Am. Chem. Soc. 2022, 144, 7610–7615.

[171]

Liu, J. C.; Wang, J. X.; Ikeda, T.; Jiang, L. Liquid-phase super photoactuator through the synergetic effects of a janus structure and solvent/thermal/photo responses. Adv. Funct. Mater. 2021, 31, 2105728.

[172]

Zhang, Z. H.; Chen, Z. Y.; Shang, L. R.; Zhao, Y. J. Structural color materials from natural polymers. Adv. Mater. Technol. 2021, 6, 2100296.

[173]

Xiong, R.; Wu, W. L.; Lu, C. H.; Cölfen, H. Bioinspired chiral template guided mineralization for biophotonic structural materials. Adv. Mater. 2022, 34, 2206509.

[174]

Wu, P. P.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 2020, 7, 338–365.

[175]

Wang, H.; Zhang, H.; Chen, Z. Y.; Zhao, Y. J.; Gu, Z. X.; Shang, L. R. Polymer-based responsive structural color materials. Prog. Mater. Sci. 2023, 135, 101091.

[176]

Gur, D.; Palmer, B. A.; Weiner, S.; Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 2017, 27, 1603514.

[177]

Xiong, R.; Luan, J. Y.; Kang, S.; Ye, C. H.; Singamaneni, S.; Tsukruk, V. V. Biopolymeric photonic structures: Design, fabrication, and emerging applications. Chem. Soc. Rev. 2020, 49, 983–1031.

Nano Research
Pages 79-96
Cite this article:
Qi Y, Zhang S. Recent advances in multifunctional shape memory photonic crystals and practical applications. Nano Research, 2024, 17(1): 79-96. https://doi.org/10.1007/s12274-023-5801-0
Topics:

1298

Views

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 08 April 2023
Revised: 24 April 2023
Accepted: 02 May 2023
Published: 15 July 2023
© Tsinghua University Press 2023
Return