AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions

Chunmei Wang1,2,3Peng-Xiang Hou1,3( )Yiming Zhao1,3Chao Shi1Jiangang Zhang1,3An-Ping Wu1Chang Liu1,3( )Hui-Ming Cheng1,4
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Analysis and Test Center, Shenyang University of Chemical Technology, Shenyang 110142, China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
School of Materials Science and Engineering, Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

A tannic acid (TA) coated single-wall carbon nanotube (SWCNT) membrane for efficient recycling of gold from its extremely low-concentration solutions is designed, demonstrating high water permeability and ultra-high adsorption capacity, as well as easy collection by oxidation.

Abstract

The efficient recovery of gold from industrial sewage is important for saving precious metals and remains a big challenge. We report the extraction of gold ions from a trace-level aqueous solution using a tannic acid (TA) coated single-wall carbon nanotube (SWCNT) film. The TA has many redox ligands that efficiently adsorb Au(III) from the solution and reduce them to Au particles. The interwoven SWCNTs not only act as a framework to improve the mechanical stability of the hybrid membrane, but also provide abundant paths for H2O transport, and facilitate the full exposure of the TA. As a result, the hybrid membrane has an excellent ability to capture gold ions from solution with a high flux of 157 L/(m2·h·bar), and an ultra-high adsorption capacity of 2095 mg/g from solutions with an extremely low gold concentration of 20 ppm. The adsorbed gold ions are reduced to Au particles, which can be easily collected by oxidation. The recovered Au nanoparticles on the TA–SWCNT hybrid film had a remarkable surface-enhanced Raman scattering effect that enabled the sensitive detection of rhodamine 6G.

Electronic Supplementary Material

Download File(s)
12274_2023_5803_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Yang, T. H.; Ahn, J.; Shi, S.; Wang, P.; Gao, R. Q.; Qin, D. Noble-metal nanoframes and their catalytic applications. Chem. Rev. 2021, 121, 796–833.

[2]

Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168–173.

[3]

Chintawar, C. C.; Yadav, A. K.; Kumar, A.; Sancheti, S. P.; Patil, N. T. Divergent gold catalysis: Unlocking molecular diversity through catalyst control. Chem. Rev. 2021, 121, 8478–8558.

[4]

Yang, D.; Zhu, Y. Evolution of catalytic activity driven by structural fusion of icosahedral gold cluster cores. Chin. J. Catal. 2021, 42, 245–250.

[5]

Petter, P. M. H.; Veit, H. M.; Bernardes, A. M. Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Manage 2014, 34, 475–482.

[6]

Prabowo, B. A.; Purwidyantri, A.; Liu, B.; Lai, H. C.; Liu, K. C. Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Nanotechnology 2021, 32, 095503.

[7]

Chen, S. C.; Chen, K. T.; Jou, A. F. J. Polydopamine-gold composite-based electrochemical biosensor using dual-amplification strategy for detecting pancreatic cancer-associated microRNA. Biosens. Bioelectron. 2021, 173, 112815.

[8]

Piergies, N.; Oćwieja, M.; Paluszkiewicz, C.; Kwiatek, W. M. Nanoparticle stabilizer as a determining factor of the drug/gold surface interaction: SERS and AFM-SEIRA studies. Appl. Surf. Sci. 2021, 537, 147897.

[9]

Liu, J. Y.; Deng, Z.; Yu, H. J.; Wang, L. Ferrocene-based metal-organic framework for highly efficient recovery of gold from WEEE. Chem. Eng. J. 2021, 410, 128360.

[10]

Chen, M. J.; Zhang, S.; Huang, J. X.; Chen, H. Y. Lead during the leaching process of copper from waste printed circuit boards by five typical ionic liquid acids. J. Clean. Prod. 2015, 95, 142–147.

[11]

Lu, C. Y.; Zhang, L.; Zhong, Y. G.; Ren, W. X.; Tobias, M.; Mu, Z. L.; Ma, Z. X.; Geng, Y.; Xue, B. An overview of e-waste management in China. J. Mater. Cycles Waste Manage. 2015, 17, 1–12.

[12]

Xiong, Y.; Adhikari, C. R.; Kawakita, H.; Ohto, K.; Inoue, K.; Harada, H. Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour. Technol. 2009, 100, 4083–4089.

[13]

Ilyas, S.; Srivastava, R. R.; Kim, H.; Das, S.; Singh, V. K. Circular bioeconomy and environmental benignness through microbial recycling of e-waste: A case study on copper and gold restoration. Waste Manage 2021, 121, 175–185.

[14]

Zhang, S. H.; Gu, Y. F.; Tang, A. J.; Li, B. H.; Li, B.; Pan, D. A.; Wu, Y. F. Forecast of future yield for printed circuit board resin waste generated from major household electrical and electronic equipment in China. J. Clean. Prod. 2021, 283, 124575.

[15]

Li, F.; Zhu, J. Y.; Sun, P. Z.; Zhang, M. R.; Li, Z. Q.; Xu, D. X.; Gong, X. Y.; Zou, X. L.; Geim, A. K.; Su, Y. et al. Highly efficient and selective extraction of gold by reduced graphene oxide. Nat. Commun. 2022, 13, 4472.

[16]

Yue, C. L.; Sun, H. M.; Liu, W. J.; Guan, B. B.; Deng, X. D.; Zhang, X.; Yang, P. Environmentally benign, rapid, and selective extraction of gold from ores and waste electronic materials. Angew. Chem. 2017, 129, 9459–9463.

[17]

Hong, Y.; Thirion, D.; Subramanian, S.; Yoo, M.; Choi, H.; Kim, H. Y.; Stoddart, J. F.; Yavuz, C. T. Precious metal recovery from electronic waste by a porous porphyrin polymer. Proc. Natl. Acad. Sci. USA 2020, 117, 16174–16180.

[18]

Zhao, F. N.; Peydayesh, M.; Ying, Y. B.; Mezzenga, R.; Ping, J. F. Transition metal dichalcogenide-silk nanofibril membrane for one-step water purification and precious metal recovery. ACS Appl. Mater. Interfaces 2020, 12, 24521–24530.

[19]

Bolisetty, S.; Mezzenga, R. Amyloid-carbon hybrid membranes for universal water purification. Nat. Nanotechnol. 2016, 11, 365–371.

[20]

Peydayesh, M.; Bolisetty, S.; Mohammadi, T.; Mezzenga, R. Assessing the binding performance of amyloid-carbon membranes toward heavy metal ions. Langmuir 2019, 35, 4161–4170.

[21]

Marcus, Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1991, 87, 2995–2999.

[22]

Cheng, R. F.; Hu, T.; Hu, M. M.; Li, C. J.; Liang, Y.; Wang, Z. H.; Zhang, H.; Li, M. C.; Wang, H. L.; Lu, H. X. et al. MXenes induce epitaxial growth of size-controlled noble nanometals: A case study for surface enhanced Raman scattering (SERS). J. Mater. Sci. Technol. 2020, 40, 119–127.

[23]

Sun, D. T.; Gasilova, N.; Yang, S. L.; Oveisi, E.; Queen, W. L. Rapid, selective extraction of trace amounts of gold from complex water mixtures with a metal-organic framework (MOF)/polymer composite. J. Am. Chem. Soc. 2018, 140, 16697–16703.

[24]

Wang, C. M.; Cheng, R. F.; Hou, P. X.; Ma, Y. H.; Majeed, A.; Wang, X. H.; Liu, C. MXene–carbon nanotube hybrid membrane for robust recovery of Au from trace-level solution. ACS Appl. Mater. Interfaces 2020, 12, 43032–43041.

[25]

Yang, F. C.; Yan, Z. G.; Zhao, J.; Miao, S. T.; Wang, D.; Yang, P. Rapid capture of trace precious metals by amyloid-like protein membrane with high adsorption capacity and selectivity. J. Mater. Chem. A 2020, 8, 3438–3449.

[26]

Yang, Q. M.; Cao, J.; Yang, F. C.; Liu, Y. C.; Chen, M. M.; Qin, R. R.; Chen, L. X.; Yang, P. Amyloid-like aggregates of bovine serum albumin for extraction of gold from ores and electronic waste. Chem. Eng. J. 2021, 416, 129066.

[27]

Tong, S. S.; Zhao, S. J.; Zhou, W. H.; Li, R. G.; Jia, Q. Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions. Microchim. Acta 2011, 174, 257–264.

[28]

Thebo, K. H.; Qian, X. T.; Zhang, Q.; Chen, L.; Cheng, H. M.; Ren, W. C. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 2018, 9, 1486.

[29]

Ţucureanu, V.; Matei, A.; Avram, A. M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 2016, 46, 502–520.

[30]

Liu, R.; Ge, H. W.; Wang, X.; Luo, J.; Li, Z. Q.; Liu, X. Y. Three-dimensional Ag-tannic acid-graphene as an antibacterial material. New J. Chem. 2016, 40, 6332–6339.

[31]

Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161.

[32]

Gowthaman, N. S. K.; Abraham John, S.; Tominaga, M. Fast growth of Au-Pt bimetallic nanoparticles on SWCNTs: Composition dependent electrocatalytic activity towards glucose and hydrogen peroxide. J. Electroanal. Chem. 2017, 798, 24–33.

[33]

Hideki, Y.; Ryuichi, S.; Ding, Z. J. Energy loss functions derived by Monte Carlo simulation from the Au 4f XPS spectrum. Surf. Sci. 1992, 261, 403–411.

[34]

Zhang, L.; Wang, S. G. Correlation of materials property and performance with internal structures evolvement revealed by laboratory X-ray tomography. Materials 2018, 11, 1795.

[35]

Guin, P. S.; Das, S.; Mandal, P. C. Electrochemical reduction of quinones in different media: A review. Int. J. Electrochem. 2011, 2011, 816202.

[36]

Kim, J.; Kim, K. R.; Hong, Y.; Choi, S.; Yavuz, C. T.; Kim, J. W.; Nam, Y. S. Photochemically enhanced selective adsorption of gold ions on tannin-coated porous polymer microspheres. ACS Appl. Mater. Interfaces 2019, 11, 21915–21925.

[37]

Huang, X.; Wang, Y. P.; Liao, X. P.; Shi, B. Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica. J. Hazard. Mater. 2010, 183, 793–798.

[38]

Gurung, M.; Adhikari, B. B.; Kawakita, H.; Ohto, K.; Inoue, K.; Alam, S. Recovery of Au(III) by using low cost adsorbent prepared from persimmon tannin extract. Chem. Eng. J. 2011, 174, 556–563.

[39]

Kim, K. R.; Choi, S.; Yavuz, C. T.; Nam, Y. S. Direct Z-scheme tannin–TiO2 heterostructure for photocatalytic gold ion recovery from electronic waste. ACS Sustainable Chem. Eng. 2020, 8, 7359–7370.

[40]
Speight, J. G. Lange’s Handbook of Chemistry, 17th ed.; McGraw-Hill: New York, 2016.
[41]

Shi, Y. M.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L. J.; Kong, J. Work function engineering of graphene electrode via chemical doping. ACS Nano 2010, 4, 2689–2694.

[42]

Li, G. X.; Hou, P. X.; Luan, J.; Li, J. C.; Li, X.; Wang, H.; Shi, C.; Liu, C.; Cheng, H. M. A MnO2 nanosheet/single–wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors. Carbon 2018, 140, 634–643.

[43]

Gao, D.; Liu, R. H.; Yu, W.; Luo, Z. L.; Liu, C. H.; Fan, S. S. Gravity-induced self-charging in carbon nanotube/polymer supercapacitors. J. Phys. Chem. C 2019, 123, 5249–5254.

[44]

Chen, J. P.; Zhu, X. S. Magnetic solid phase extraction using ionic liquid-coated core–shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of rhodamine B in food samples. Food Chem. 2016, 200, 10–15.

[45]

Chao, Y. H.; Pang, J. Y.; Bai, Y.; Wu, P. W.; Luo, J.; He, J.; Jin, Y.; Li, X. W.; Xiong, J.; Li, H. M. et al. Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of rhodamine B and rhodamine 6G from food samples. Food Chem. 2020, 320, 126666.

[46]

Li, Y. Y.; He, W. Y.; Peng, Q. C.; Hou, L. Y.; He, J.; Li, K. Aggregation-induced emission luminogen based molecularly imprinted ratiometric fluorescence sensor for the detection of rhodamine 6G in food samples. Food Chem. 2019, 287, 55–60.

[47]

Wang, J.; Li, J. Y.; Zeng, C.; Qu, Q.; Wang, M. F.; Qi, W.; Su, R. X.; He, Z. M. Sandwich-like sensor for the highly specific and reproducible detection of rhodamine 6G on a surface-enhanced Raman scattering platform. ACS Appl. Mater. Interfaces 2020, 12, 4699–4706.

[48]

Thaler, S.; Haritoglou, C.; Choragiewicz, T. J.; Messias, A.; Baryluk, A.; May, C. A.; Rejdak, R.; Fiedorowicz, M.; Zrenner, E.; Schuettauf, F. In vivo toxicity study of rhodamine 6G in the rat retina. Invest. Ophthalmol. Vis. Sci. 2008, 49, 2120–2126.

[49]

Lu, Z.; Wei, W. X.; Yang, J. J.; Xu, Q.; Hu, X. Y. Improved SERS performance of a silver triangular nanoparticle/TiO2 nanoarray heterostructure and its application for food additive detection. New J. Chem. 2022, 46, 7070–7077.

[50]

Xie, L. M.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. F. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J. Am. Chem. Soc. 2009, 131, 9890–9891.

Nano Research
Pages 11350-11357
Cite this article:
Wang C, Hou P-X, Zhao Y, et al. Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions. Nano Research, 2023, 16(8): 11350-11357. https://doi.org/10.1007/s12274-023-5803-y
Topics:

1050

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 15 January 2023
Revised: 22 April 2023
Accepted: 03 May 2023
Published: 27 June 2023
© Tsinghua University Press 2023
Return