AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Glioma cell membrane camouflaged cinobufotalin delivery system for combinatorial orthotopic glioblastoma therapy

Zibin Song1,2,§Liqian Zhao1,2,§Weiyi Fang3,§Siyun Guo4Anqi Xu4Zhengming Zhan1,2Yonghua Cai1,2ShuaiShuai Xue1,2Peng Chai1,2Qiuhua Jiang5( )Peng Zhao4( )Ye Song1,2,5( )
Department of Neurosurgery, Southern Medical University Nanfang Hospital, Guangzhou 510515, China
Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong, Provincial Key Laboratory of Cardiac Function and Microcirculation Guangdong, Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou 341000, China

§ Zibin Song, Liqian Zhao, and Weiyi Fang contributed equally to this work.

Show Author Information

Graphical Abstract

We construct a biomimetic nanocarrier (Cu2−xSe-CB@MEM, CCM), consisting of Cu2−xSe nanoparticle modified by cinobufotalin (CB), camouflaged with Ln229 membrane. The optimized cinobufotalin based chemotherapy combining with the near-infrared-II (NIR-II) irradiation induces glioblastoma cell cycle arrest and promotes apoptosis.

Abstract

Glioblastoma (GBM) belongs to the deadliest primary malignancies with high mortality rate and poor prognosis. Over the past decades, less progress has been made to treat GBM, owing largely to the lack of effective chemotherapeutics and poor drug accumulation in the glioma tissue. In order to address this issue, we present an efficient biomimetic nanocomposite (Cu2−xSe-CB@MEM, CCM), consisting of Cu2−xSe nanoparticle core modified by cinobufotalin (CB), a toad venom extract, which is camouflaged with glioma cell Ln229 membrane. It is demonstrated that CB can decrease the protein activity of inosine monophosphate dehydrogenase 1 (IMPDH1), a key target correlated with prognosis, through intermolecular hydrogen bonding with amino acid residues ARG-105 and ASP-77. The glioma cell membrane-camouflage endows the CCM with blood-brain barrier penetration and homology tumor-targeted ability. The optimized cinobufotalin based chemotherapy combining with the near-infrared-II (NIR-II) irradiation shows outstanding inhibition effect to glioma cells, by blocking cell cycle and inducing apoptosis. In vivo mice bearing orthotopic Ln229 GBM treated with CCM+NIR-II (CCM+L) have significantly suppressed tumor growth and extended survival, without side effect. The glioma cell membrane camouflaged nanocomposite of Cu2−xSe and cinobufotalin with its significant anti-glioma property and well biosafety will provide novel alternatives for clinical treatment of GBM.

Electronic Supplementary Material

Download File(s)
12274_2023_5807_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Ostrom, Q. T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J. S. Corrigendum to: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro-Oncol. 2020, 24, 1214.

[2]

Louis, D. N.; Perry, A.; Wesseling, P.; Brat, D. J.; Cree, I. A.; Figarella-Branger, D.; Hawkins, C.; Ng, H. K.; Pfister, S. M.; Reifenberger, G. et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncol. 2021, 23, 1231–1251.

[3]

Shergalis, A.; Bankhead III, A.; Luesakul, U.; Muangsin, N.; Neamati, N. Current challenges and opportunities in treating glioblastoma. Pharmacol. Rev. 2018, 70, 412–445.

[4]

Horbinski, C.; Berger, T.; Packer, R. J.; Wen, P. Y. Clinical implications of the 2021 edition of the WHO classification of central nervous system tumours. Nat. Rev. Neurol. 2022, 18, 515–529.

[5]

Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M. S.; Fink, K. et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017, 318, 2306–2316.

[6]

Li, D. C.; Zhong, X. K.; Zeng, Z. P.; Jiang, J. G.; Li, L.; Zhao, M. M.; Yang, X. Q.; Chen, J.; Zhang, B. S.; Zhao, Q. Z. et al. Application of targeted drug delivery system in Chinese medicine. J. Controlled Release 2009, 138, 103–112.

[7]

Zhang, Z. T.; Ji, Y.; Hu, N.; Yu, Q. Q.; Zhang, X. R.; Li, J.; Wu, F. L.; Xu, H. E.; Tang, Q. Y.; Li, X. L. Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asian J. Pharm. Sci. 2022, 17, 751–766.

[8]

Meng, H. N.; Shen, M. Q.; Li, J. J.; Zhang, R. X.; Li, X.; Zhao, L.; Huang, G.; Liu, J. J. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur. J. Pharmacol. 2021, 906, 174280.

[9]

Hou, R. T.; Li, Y. H.; Luo, X. J.; Zhang, W.; Yang, H. L.; Zhang, Y. W.; Liu, J. H.; Liu, S. H.; Han, S. Y.; Liu, C. et al. ENKUR expression induced by chemically synthesized cinobufotalin suppresses malignant activities of hepatocellular carcinoma by modulating β-catenin/c-Jun/MYH9/USP7/c-Myc axis. Int. J. Biol. Sci. 2022, 18, 2553–2567.

[10]

Li, W. Q.; Pei, S. H.; Zhang, X. J.; Qi, D. F.; Zhang, W. K.; Dou, Y. Y.; Yang, R. H.; Yao, X.; Zhang, Z. S.; Xie, S. Q. et al. Cinobufotalin inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells through down-regulate β-catenin in vitro and in vivo. Eur. J. Pharmacol. 2022, 922, 174886.

[11]

Zhang, F.; Yin, Y. T.; Xu, T. T. Cinobufotalin injection combined with chemotherapy for the treatment of advanced NSCLC in China: A PRISMA-compliant meta-analysis of 29 randomized controlled trials. Medicine 2019, 98, e16969.

[12]

Chen, T.; Li, D.; Fu, Y. L.; Hu, W. Screening of QHF formula for effective ingredients from Chinese herbs and its anti-hepatic cell cancer effect in combination with chemotherapy. Chin. Med. J. 2008, 121, 363–368.

[13]

Li, X. W.; Chen, C. H.; Dai, Y.; Huang, C. Z.; Han, Q. R.; Jing, L. L.; Ma, Y.; Xu, Y. H.; Liu, Y. W.; Zhao, L. et al. Cinobufagin suppresses colorectal cancer angiogenesis by disrupting the endothelial mammalian target of rapamycin/hypoxia-inducible factor 1α axis. Cancer Sci. 2019, 110, 1724–1734.

[14]

Huang, F.; Ni, M.; Chalishazar, M. D.; Huffman, K. E.; Kim, J.; Cai, L.; Shi, X. L.; Cai, F.; Zacharias, L. G.; Ireland, A. S. et al. Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers. Cell Metab. 2018, 28, 369–382.e5.

[15]

Burrell, A. L.; Nie, C. K.; Said, M.; Simonet, J. C.; Fernández-Justel, D.; Johnson, M. C.; Quispe, J.; Buey, R. M.; Peterson, J. R.; Kollman, J. M. IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nat. Struct. Mol. Biol. 2022, 29, 47–58.

[16]

Liu, X. L.; Madhankumar, A. B.; Miller, P. A.; Duck, K. A.; Hafenstein, S.; Rizk, E.; Slagle-Webb, B.; Sheehan, J. M.; Connor, J. R.; Yang, Q. X. MRI contrast agent for targeting glioma: Interleukin-13 labeled liposome encapsulating gadolinium-DTPA. Neuro-Oncol. 2016, 18, 691–699.

[17]

Peng, C. Q.; Gao, X. F.; Xu, J.; Du, B. J.; Ning, X. H.; Tang, S. H.; Bachoo, R. M.; Yu, M. X.; Ge, W. P.; Zheng, J. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Res. 2017, 10, 1366–1376.

[18]

Zhao, Z.; Nelson, A. R.; Betsholtz, C.; Zlokovic, B. V. Establishment and dysfunction of the blood-brain barrier. Cell 2015, 163, 1064–1078.

[19]

Steeg, P. S. The blood-tumour barrier in cancer biology and therapy. Nat. Rev. Clin. Oncol. 2021, 18, 696–714.

[20]

Sarkaria, J. N.; Hu, L. S.; Parney, I. F.; Pafundi, D. H.; Brinkmann, D. H.; Laack, N. N.; Giannini, C.; Burns, T. C.; Kizilbash, S. H.; Laramy, J. K. et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-Oncol. 2018, 20, 184–191.

[21]

Alifieris, C.; Trafalis, D. T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 2015, 152, 63–82.

[22]

Van Tellingen, O.; Yetkin-Arik, B.; De Gooijer, M. C.; Wesseling, P.; Wurdinger, T.; De Vries, H. E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat. 2015, 19, 1–12.

[23]

Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

[24]

Zeng, Z. L.; Pu, K. Y. Improving cancer immunotherapy by cell membrane-camouflaged nanoparticles. Adv. Funct. Mater. 2020, 30, 2004397.

[25]

Fan, Z. Y.; Li, P. Y.; Deng, J. J.; Bady, S. C.; Cheng, H. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res. 2018, 11, 5573–5583.

[26]

Wang, C. X.; Wu, B.; Wu, Y. T.; Song, X. Y.; Zhang, S. S.; Liu, Z. H. Camouflaging nanoparticles with brain metastatic tumor cell membranes: a new strategy to traverse blood-brain barrier for imaging and therapy of brain tumors. Adv. Funct. Mater. 2020, 30, 1909369.

[27]

Jia, Y. L.; Wang, X. B.; Hu, D. H.; Wang, P.; Liu, Q. H.; Zhang, X. J.; Jiang, J. Y.; Liu, X.; Sheng, Z. H.; Liu, B. et al. Phototheranostics: Active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles. ACS Nano 2019, 13, 386–398.

[28]

Zhou, C. Y.; Zhang, L.; Sun, T.; Zhang, Y.; Liu, Y. D.; Gong, M. F.; Xu, Z. S.; Du, M. M.; Liu, Y.; Liu, G. et al. Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy. Adv. Mater. 2021, 33, 2006532.

[29]

Yin, J. H.; Pan, S. S.; Guo, X.; Gao, Y. S.; Zhu, D. Y.; Yang, Q. H.; Gao, J. J.; Zhang, C. Q.; Chen, Y. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett. 2021, 13, 30.

[30]

Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

[31]

Wu, X. Z.; Suo, Y. K.; Shi, H.; Liu, R. Q.; Wu, F. X.; Wang, T. Z.; Ma, L. N.; Liu, H. G.; Cheng, Z. Deep-tissue photothermal therapy using laser illumination at NIR-IIa window. Nano-Micro Lett. 2020, 12, 38.

[32]

Guo, B.; Sheng, Z. H.; Hu, D. H.; Liu, C. B.; Zheng, H. R.; Liu, B. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 2018, 30, 1802591.

[33]

Li, S.; Zhang, Y.; Liu, X.; Tian, Y.; Cheng, Y.; Tang, L. G.; Lin, H. R. Smart NIR-II croconaine dye-peptide for enhanced photo-sonotheranostics of hepatocellular carcinoma. Theranostics 2022, 12, 76–86.

[34]

He, T.; Jiang, C.; He, J.; Zhang, Y. F.; He, G.; Wu, J. Y. Z.; Lin, J.; Zhou, X.; Huang, P. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Adv. Mater. 2021, 33, 2008540.

[35]

Shao, W.; Yang, C.; Li, F. Y.; Wu, J. H.; Wang, N.; Ding, Q.; Gao, J. Q.; Ling, D. S. Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nano-Micro Lett. 2020, 12, 147.

[36]
Balakrishnan, P. B.; Ledezma, D. K.; Cano-Mejia, J.; Andricovich, J.; Palmer, E.; Patel, V. A.; Latham, P. S.; Yvon, E. S.; Villagra, A.; Fernandes, R. et al. CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma. Nano Res. 2022, 15, 2300–2314.
[37]

Zeng, F. T.; Tang, L. G.; Zhang, Q. Y.; Shi, C. R.; Huang, Z. C.; Nijiati, S.; Chen, X. Y.; Zhou, Z. J. Coordinating the mechanisms of action of ferroptosis and the photothermal effect for cancer theranostics. Angew. Chem., Int. Ed. 2022, 61, e202112925.

[38]

Liu, Z.; Wang, J. Q.; Qiu, K. Q.; Liao, X. X.; Rees, T. W.; Ji, L. N.; Chao, H. Fabrication of red blood cell membrane-camouflaged Cu2−xSe nanoparticles for phototherapy in the second near-infrared window. Chem. Commun. 2019, 55, 6523–6526.

[39]

Wan, H.; Zhang, Y.; Liu, Z. Y.; Xu, G. J.; Huang, G.; Ji, Y. S.; Xiong, Z. C.; Zhang, Q. Q.; Dong, J.; Zhang, W. B. et al. Facile fabrication of a near-infrared responsive nanocarrier for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. Nanoscale 2014, 6, 8743–8753.

[40]

You, Q.; Sun, Q.; Wang, J. P.; Tan, X. X.; Pang, X. J.; Liu, L.; Yu, M.; Tan, F. P.; Li, N. A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO. Nanoscale 2017, 9, 3784–3796.

[41]

Chin, R. M.; Fu, X. D.; Pai, M. Y.; Vergnes, L.; Hwang, H.; Deng, G.; Diep, S.; Lomenick, B.; Meli, V. S.; Monsalve, G. C. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 2014, 510, 397–401.

[42]

Lomenick, B.; Hao, R.; Jonai, N.; Chin, R. M.; Aghajan, M.; Warburton, S.; Wang, J. N.; Wu, R. P.; Gomez, F.; Loo, J. A. et al. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. USA 2009, 106, 21984–21989.

[43]

Jafari, R.; Almqvist, H.; Axelsson, H.; Ignatushchenko, M.; Lundbäck, T.; Nordlund, P.; Molina, D. M. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 2014, 9, 2100–2122.

[44]

Liu, Z.; Chan, L.; Chen, L. Y.; Bai, Y.; Chen, T. F. Facile fabrication of near-infrared-responsive and chitosan-functionalized Cu2Se nanoparticles for cancer photothermal therapy. Chem. Asian J. 2016, 11, 3032–3039.

[45]

Li, Q.; Sun, L. H.; Hou, M. M.; Chen, Q. B.; Yang, R. H.; Zhang, L.; Xu, Z. G.; Kang, Y. J.; Xue, P. Phase-change material packaged within hollow copper sulfide nanoparticles carrying doxorubicin and chlorin e6 for fluorescence-guided trimodal therapy of cancer. ACS Appl. Mater. Interfaces 2019, 11, 417–429.

[46]

Bicker, J.; Alves, G.; Fortuna, A.; Falcão, A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: A review. Eur. J. Pharm. Biopharm. 2014, 87, 409–432.

[47]

Hanafy, A. S.; Dietrich, D.; Fricker, G.; Lamprecht, A. Blood-brain barrier models: Rationale for selection. Adv. Drug Deliv. Rev. 2021, 176, 113859.

Nano Research
Pages 11164-11175
Cite this article:
Song Z, Zhao L, Fang W, et al. Glioma cell membrane camouflaged cinobufotalin delivery system for combinatorial orthotopic glioblastoma therapy. Nano Research, 2023, 16(8): 11164-11175. https://doi.org/10.1007/s12274-023-5807-7
Topics:

1028

Views

6

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 02 February 2023
Revised: 29 April 2023
Accepted: 05 May 2023
Published: 09 June 2023
© Tsinghua University Press 2023
Return