AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances of implantable systems and devices in cancer therapy and sensing

Zhuoheng Jiang1,2Zhaoyang Yue1,3Zhirong Liu1,2( )Linlin Li1,2,3( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Show Author Information

Graphical Abstract

In this review, the new-emerging development of implantable systems and devices for suppressing tumors and sensing tumor status is summarized. In particular, we emphasize these systems with responsive drug delivery capacity and the external field assisted therapy, as well as implantable biosensors for tumor microenvironment monitoring.

Abstract

Malignant tumors have the capability to metastasize and colonize, meaning that they can spread to other organs and tissues, distributing metastatic focus and are hard to target. Although significant advances have been made in cancer treatment, it remains one of the leading causes of death around the globe. In recent years, new-emerging implantable systems and devices have been developed to tackle the challenge of metastatic tumors. In this review, implantable systems for suppressing tumors and preventing tumor recurrence are reported. In particular, we emphasize the responsive drug delivery systems and the external field assisted catalytic therapy for tumor treatment, as well as implantable biosensors for tumor microenvironment monitoring. We also conclude the open challenges and future perspectives of implantable systems and devices for cancer therapy and sensing.

References

[1]

Coussens, L. M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867.

[2]

Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 2016, 16, 201–218.

[3]

Zhang, W.; Wang, F.; Hu, C.; Zhou, Y.; Gao, H. L.; Hu, J. The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm. Sin. B 2020, 10, 2037–2053.

[4]

Yang, F. J.; Zhao, Z. Q.; Sun, B. J.; Chen, Q.; Sun, J.; He, Z. G.; Luo, C. Nanotherapeutics for antimetastatic treatment. Trends Cancer 2020, 6, 645–659.

[5]

Yang, Y. K.; Qiao, X. Y.; Huang, R. Y.; Chen, H. X.; Shi, X. L.; Wang, J.; Tan, W. H.; Tan, Z. K. E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials 2020, 230, 119618.

[6]

Li, X. Y.; Duan, D. Y.; Yang, J. M.; Wang, P. P.; Han, B.; Zhao, L.; Jepsen, S.; Dommisch, H.; Winter, J.; Xu, Y. The expression of human β-defensins (hBD-1, hBD-2, hBD-3, hBD-4) in gingival epithelia. Arch. Oral Biol. 2016, 66, 15–21.

[7]

Alieva, M.; Van Rheenen, J.; Broekman, M. L. D. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin. Exp. Metastasis 2018, 35, 319–331.

[8]

Belluomo, R.; Khodaei, A.; Amin Yavari, S. Additively manufactured bi-functionalized bioceramics for reconstruction of bone tumor defects. Acta Biomater. 2023, 156, 234–249.

[9]

Liu, W.; Wang, Y. F.; Wang, J. Q.; Lanier, O. L.; Wechsler, M. E.; Peppas, N. A.; Gu, Z. Macroencapsulation devices for cell therapy. Engineering 2022, 13, 53–70.

[10]

Cai, S. M.; Jin, Z.; Zeng, P.; Yang, L. X.; Yan, Y. Q.; Wang, Z. M.; Shen, Y. Y.; Guo, S. R. Structural optimization and in vivo evaluation of a colorectal stent with anti-migration and anti-tumor properties. Acta Biomater. 2022, 154, 123–134.

[11]

Cai, M.; Li, X. J.; Xu, M.; Zhou, S. Q.; Fan, L.; Huang, J. Y.; Xiao, C. R.; Lee, Y.; Yang, B.; Wang, L. et al. Injectable tumor microenvironment-modulated hydrogels with enhanced chemosensitivity and osteogenesis for tumor-associated bone defects closed-loop management. Chem. Eng. J. 2022, 450, 138086.

[12]

Wang, X.; Zhai, D.; Yao, X. G.; Wang, Y. F.; Ma, H. S.; Yu, X. P.; Du, L.; Lin, H. X.; Wu, C. T. 3D printing of pink bioceramic scaffolds for bone tumor tissue therapy. Appl. Mater. Today 2022, 27, 101443.

[13]

Zhang, L. C.; Guan, X. L.; Xiao, X. F.; Chen, Z. G.; Zhou, G.; Fan, Y. B. Dual-phase injectable thermosensitive hydrogel incorporating Fe3O4@PDA with pH and NIR triggered drug release for synergistic tumor therapy. Eur. Polym. J. 2022, 176, 111424.

[14]

Wan, X. Y.; Zhao, Y. C.; Li, Z.; Li, L. L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022, 2, 20210029.

[15]

Talebian, S.; Foroughi, J.; Wade, S. J.; Vine, K. L.; Dolatshahi-Pirouz, A.; Mehrali, M.; Conde, J.; Wallace, G. G. Biopolymers for antitumor implantable drug delivery systems: Recent advances and future outlook. Adv. Mater. 2018, 30, 1706665.

[16]

Santos, A.; Aw, M. S.; Bariana, M.; Kumeria, T.; Wang, Y.; Losic, D. Drug-releasing implants: Current progress, challenges, and perspectives. J. Mater. Chem. B 2014, 2, 6157–6182.

[17]

Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Dis. Today 2002, 7, 569–579.

[18]

Zheng, H.; Wang, S. Q.; Zhou, L.; He, X. J.; Cheng, Z. J.; Cheng, F.; Liu, Z.; Wang, X. Y.; Chen, Y. H.; Zhang, Q. Y. Injectable multi-responsive micelle/nanocomposite hybrid hydrogel for bioenzyme and photothermal augmented chemodynamic therapy of skin cancer and bacterial infection. Chem. Eng. J. 2021, 404, 126439.

[19]

Kuppusamy, P.; Li, H. Q.; Ilangovan, G.; Cardounel, A. J.; Zweier, J. L.; Yamada, K.; Krishna, M. C.; Mitchell, J. B. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002, 62, 307–312.

[20]

Russo, A.; DeGraff, W.; Friedman, N.; Mitchell, J. B. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res. 1986, 46, 2845–2848.

[21]

Zhang, Y.; Dosta, P.; Conde, J.; Oliva, N.; Wang, M.; Artzi, N. Prolonged local in vivo delivery of stimuli-responsive nanogels that rapidly release doxorubicin in triple-negative breast cancer cells. Adv. Healthcare Mater. 2020, 9, e1901101.

[22]

Zhao, Z. R.; Shen, J. W.; Zhang, L.; Wang, L. S.; Xu, H. Y.; Han, Y. H.; Jia, J.; Lu, Y.; Yu, R. T.; Liu, H. M. Injectable postoperative enzyme-responsive hydrogels for reversing temozolomide resistance and reducing local recurrence after glioma operation. Biomater. Sci. 2020, 8, 5306–5316.

[23]

Sharma, R.; Singh, D.; Gaur, P.; Joshi, D. Intelligent automated drug administration and therapy: Future of healthcare. Drug Deliv. Transl. Res. 2021, 11, 1878–1902.

[24]

Linsley, C. S.; Wu, B. M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Delivery 2017, 8, 89–107.

[25]

Wang, H. S.; Zhang, W. B.; Gao, C. Y. Shape transformation of light-responsive pyrene-containing micelles and their influence on cytoviability. Biomacromolecules 2015, 16, 2276–2281.

[26]

Zhao, H.; Sterner, E. S.; Coughlin, E. B.; Theato, P. o-Nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science. Macromolecules 2012, 45, 1723–1736.

[27]

Zhang, Z. W.; Wang, W. H.; O’Hagan, M.; Dai, J. H.; Zhang, J. J.; Tian, H. Stepping out of the blue: From visible to near-IR triggered photoswitches. Angew. Chem., Int. Ed. 2022, 61, e202205758.

[28]

Choudhari, M.; Xu, J. J.; McKay, A. I.; Guerrin, C.; Forsyth, C.; Ma, H. Z.; Goerigk, L.; O’Hair, R. A. J.; Bonnefont, A.; Ruhlmann, L. et al. A photo-switchable molecular capsule: Sequential photoinduced processes. Chem. Sci. 2022, 13, 13732–13740.

[29]

Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

[30]

Wang, Z. T.; Wang, M. L.; Wang, X. X.; Hao, Z. K.; Han, S. B.; Wang, T.; Zhang, H. Y. Photothermal-based nanomaterials and photothermal-sensing: An overview. Biosens. Bioelectron. 2023, 220, 114883.

[31]

Murdan, S. Electro-responsive drug delivery from hydrogels. J. Controlled Release 2003, 92, 1–17.

[32]
Singhal, M.; Kalia, Y. N. Iontophoresis and electroporation. In Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds; Sugibayashi, K., Ed.; Springer: Tokyo, 2017; pp 165–182.
[33]

Prausnitz, M. R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268.

[34]

Subramony, J. A.; Sharma, A.; Phipps, J. B. Microprocessor controlled transdermal drug delivery. Int. J. Pharm. 2006, 317, 1–6.

[35]

Adhikary, P.; Mahmud, M. A. P.; Solaiman, T.; Wang, Z. L. Recent advances on biomechanical motion-driven triboelectric nanogenerators for drug delivery. Nano Today 2022, 45, 101513.

[36]

Liu, Z. R.; Liang, X.; Liu, H. H.; Wang, Z.; Jiang, T.; Cheng, Y. Y.; Wu, M. Q.; Xiang, D. L.; Li, Z.; Wang, Z. L. et al. High-throughput and self-powered electroporation system for drug delivery assisted by microfoam electrode. ACS Nano 2020, 14, 15458–15467.

[37]

Liu, Z. R.; Nie, J. H.; Miao, B.; Li, J. D.; Cui, Y. B.; Wang, S.; Zhang, X. D.; Zhao, G. R.; Deng, Y. B.; Wu, Y. H. et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater. 2019, 31, 1807795.

[38]

Zhao, C. C.; Feng, H. Q.; Zhang, L. J.; Li, Z.; Zou, Y.; Tan, P. C.; Ouyang, H.; Jiang, D. J.; Yu, M.; Wang, C. et al. Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv. Funct. Mater. 2019, 29, 1808640.

[39]

Hayashi, K.; Sakamoto, W.; Yogo, T. Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy. Adv. Funct. Mater. 2016, 26, 1708–1718.

[40]

Sasikala, A. R. K.; Unnithan, A. R.; Yun, Y. H.; Park, C. H.; Kim, C. S. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater. 2016, 31, 122–133.

[41]

Panikkanvalappil, S. R.; Bhagavatula, S. K.; Deans, K.; Jonas, O.; Rashidian, M.; Mishra, S. Enhanced tumor accumulation of multimodal magneto-plasmonic nanoparticles via an implanted micromagnet-assisted delivery strategy. Adv. Healthcare Mater. 2023, 12, 2201585.

[42]

Erkoc, P.; Yasa, I. C.; Ceylan, H.; Yasa, O.; Alapan, Y.; Sitti, M. Mobile microrobots for active therapeutic delivery. Adv. Ther. 2019, 2, 1800064.

[43]

Jain, A.; Tiwari, A.; Verma, A.; Jain, S. K. Ultrasound-based triggered drug delivery to tumors. Drug Deliv. Transl. Res. 2018, 8, 150–164.

[44]

Sealy, C. Scaffold material sheds light on bone tumor therapy. Mater. Today 2018, 21, 465–466.

[45]

Cojocaru, F. D.; Balan, V.; Popa, I. M.; Munteanu, A.; Anghelache, A.; Verestiuc, L. Magnetic composite scaffolds for potential applications in radiochemotherapy of malignant bone tumors. Medicina 2019, 55, 153.

[46]

Liu, Y. Q.; Li, T.; Ma, H. S.; Zhai, D.; Deng, C. J.; Wang, J. W.; Zhuo, S. J.; Chang, J.; Wu, C. T. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta Biomater. 2018, 73, 531–546.

[47]

Miao, H.; Shen, R. Q.; Zhang, W. H.; Lin, Z. F.; Wang, H.; Yang, L. K.; Liu, X. Y.; Lin, N. B. Near-infrared light triggered silk fibroin scaffold for photothermal therapy and tissue repair of bone tumors. Adv. Funct. Mater. 2021, 31, 2007188.

[48]

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

[49]

Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.

[50]

Yao, S. C.; Wang, Z.; Li, L. L. Application of organic frame materials in cancer therapy through regulation of tumor microenvironment. Smart Mater. Med. 2022, 3, 230–242.

[51]

Jiang, Y. Y.; Zhao, X. H.; Huang, J. G.; Li, J. C.; Upputuri, P. K.; Sun, H.; Han, X.; Pramanik, M.; Miao, Y. S.; Duan, H. W. et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 2020, 11, 1857.

[52]

Pan, X. T.; Wang, W. W.; Huang, Z. J.; Liu, S.; Guo, J.; Zhang, F. R.; Yuan, H. J.; Li, X.; Liu, F. Y.; Liu, H. Y. MOF-derived double-layer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy. Angew. Chem., Int. Ed. Engl. 2020, 59, 13557–13561.

[53]

Ge, M.; Xu, D. L.; Chen, Z. X.; Wei, C. Y.; Zhang, Y. X.; Yang, C.; Chen, Y.; Lin, H.; Shi, J. L. Magnetostrictive-piezoelectric-triggered nanocatalytic tumor therapy. Nano Lett. 2021, 21, 6764–6772.

[54]

Ma, X. Y.; Ren, X. L.; Guo, X. D.; Fu, C. H.; Wu, Q.; Tan, L. F.; Li, H. B.; Zhang, W.; Chen, X. D.; Zhong, H. S. et al. Multifunctional iron-based metal-organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials 2019, 214, 119223.

[55]

Chen, T.; Gu, T. X.; Cheng, L.; Li, X.; Han, G. R.; Liu, Z. Porous Pt nanoparticles loaded with doxorubicin to enable synergistic chemo-/electrodynamic therapy. Biomaterials 2020, 255, 120202.

[56]

Sun, B. W.; Bte Rahmat, J. N.; Zhang, Y. Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials 2022, 291, 121875.

[57]

Bansal, A.; Yang, F. Y.; Xi, T.; Zhang, Y.; Ho, J. S. In vivo wireless photonic photodynamic therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 1469–1474.

[58]

Liu, Z.; Xu, L. L.; Zheng, Q.; Kang, Y.; Shi, B. J.; Jiang, D. J.; Li, H.; Qu, X. C.; Fan, Y. B.; Wang, Z. L. et al. Human motion driven self-powered photodynamic system for long-term autonomous cancer therapy. ACS Nano 2020, 14, 8074–8083.

[59]

Guan, H. Y.; Zou, P. J.; Lin, R.; Xiao, L.; Fang, Z. Y.; Chen, J. Y.; Lin, T.; Wang, Y.; Peng, Y. F.; Zhong, T. Y. et al. Implantable self-powered therapeutic pellet for wireless photodynamic/sonodynamic hybrid therapy of cancer recurrence inhibition and tumor regression. Nano Energy 2023, 105, 108002.

[60]

Kuang, H. Z.; Huang, S. Y.; Zhang, C.; Chen, J. K.; Shi, L.; Zeng, X. Y.; Li, Y. B.; Yang, Z. Y.; Wang, X. Z.; Dong, S. R. et al. Electric-field-resonance-based wireless triboelectric nanogenerators and sensors. ACS Appl. Mater. Interfaces 2022, 14, 794–804.

[61]

Wen, F.; Wang, H.; He, T. Y. Y.; Shi, Q. F.; Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Cao, Z. G.; Dai, Y. B.; Zhang, T. et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266.

[62]

Li, Y. H.; Yu, J. R.; Wei, Y. C.; Wang, Y. F.; Feng, Z. Y.; Cheng, L. Q.; Huo, Z. W.; Lei, Y. Q.; Sun, Q. J. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23, 1329.

[63]

Wang, L.; He, T. Y. Y.; Zhang, Z. X.; Zhao, L. B.; Lee, C.; Luo, G. X.; Mao, Q.; Yang, P.; Lin, Q. J.; Li, X. et al. Self-sustained autonomous wireless sensing based on a hybridized TENG and PEG vibration mechanism. Nano Energy 2021, 80, 105555.

[64]

Yao, S. C.; Zheng, M. J.; Wang, Z.; Zhao, Y. C.; Wang, S. B.; Liu, Z. R.; Li, Z.; Guan, Y. Q.; Wang, Z. L.; Li, L. L. Self-powered, implantable, and wirelessly controlled NO generation system for intracranial neuroglioma therapy. Adv. Mater. 2022, 34, 2205881.

[65]

Cabrales, L. E. B.; Montijano, J. I.; Schonbek, M.; Castañeda, A. R. S. A viscous modified Gompertz model for the analysis of the kinetics of tumors under electrochemical therapy. Math. Comput. Simul. 2018, 151, 96–110.

[66]

Gu, T. X.; Wang, Y.; Lu, Y. H.; Cheng, L.; Feng, L. Z.; Zhang, H.; Li, X.; Han, G. R.; Liu, Z. Platinum nanoparticles to enable electrodynamic therapy for effective cancer treatment. Adv. Mater. 2019, 31, 1806803.

[67]

Pintarelli, G. B.; Berkenbrock, J. A.; Rassele, A.; Rangel, M. M. M.; Suzuki, D. O. H. Computer simulation of commercial conductive gels and their application to increase the safety of electrochemotherapy treatment. Med. Eng. Phys. 2019, 74, 99–105.

[68]

Vijh, A. K. Electrochemical treatment (ECT) of cancerous tumours: Necrosis involving hydrogen cavitation, chlorine bleaching, pH changes, electroosmosis. Int. J. Hydrogen Energy 2004, 29, 663–665.

[69]

Von Euler, H.; Olsson, J. M.; Hultenby, K.; Thörne, A.; Lagerstedt, A. S. Animal models for treatment of unresectable liver tumours: A histopathologic and ultra-structural study of cellular toxic changes after electrochemical treatment in rat and dog liver. Bioelectrochemistry 2003, 59, 89–98.

[70]

Li, J. H.; Xin, Y. L.; Fan, X. Q.; Chen, J.; Wang, J.; Zhou, J. Effect of electrochemotherapy in treating patients with venous malformations. Chin. J. Integr. Med. 2013, 19, 387–393.

[71]

Djokic, M.; Cemazar, M.; Bosnjak, M.; Dezman, R.; Badovinac, D.; Miklavcic, D.; Kos, B.; Stabuc, M.; Stabuc, B.; Jansa, R. et al. A prospective phase II study evaluating intraoperative electrochemotherapy of hepatocellular carcinoma. Cancers 2020, 12, 3778.

[72]

Wei, D. Retracted: Generating energy from air: Solid state planar concentration cell based on graphene oxide. Adv. Mater. Technol. 2016, 1, 1600145.

[73]

Pan, Y. H.; Wang, X. Z.; Zhang, W. Y.; Tang, L. Y.; Mu, Z. Y.; Liu, C.; Tian, B. L.; Fei, M. C.; Sun, Y. M.; Su, H. H. et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat. Commun. 2022, 13, 3063.

[74]

Fried, S. D.; Bagchi, S.; Boxer, S. G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 2014, 346, 1510–1514.

[75]

Shaik, S.; Mandal, D.; Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8, 1091–1098.

[76]

Chen, T.; Chu, Q.; Li, M. Y.; Han, G. R.; Li, X. Fe3O4@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy. J. Nanobiotechnol. 2021, 19, 206.

[77]

Lu, Z. J.; Gao, J. Y.; Fang, C.; Zhou, Y.; Li, X.; Han, G. R. Porous Pt nanospheres incorporated with GOx to enable synergistic oxygen-inductive starvation/electrodynamic tumor therapy. Adv. Sci. 2020, 7, 2001223.

[78]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[79]

Yao, S. C.; Zhao, X. Y.; Wang, X. Y.; Huang, T.; Ding, Y. M.; Zhang, J. M.; Zhang, Z. Y.; Wang, Z. L.; Li, L. L. Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy. Adv. Mater. 2022, 34, 2109568.

[80]

Yao, S. C.; Zheng, M. J.; Wang, S. B.; Huang, T.; Wang, Z.; Zhao, Y. C.; Yuan, W.; Li, Z.; Wang, Z. L.; Li, L. L. Self-driven electrical stimulation promotes cancer catalytic therapy based on fully conjugated covalent organic framework nanocages. Adv. Funct. Mater. 2022, 32, 2209142.

[81]

Zheng, M. J.; Yao, S. C.; Zhao, Y. C.; Wan, X. Y.; Hu, Q. H.; Tang, C. Y.; Jiang, Z. H.; Wang, S. B.; Liu, Z. R.; Li, L. L. Self-driven electrical stimulation-promoted cancer catalytic therapy and chemotherapy based on an implantable nanofibrous patch. ACS Appl. Mater. Interfaces 2023, 15, 7855–7866.

[82]

Al Sawaftah, N. M.; Husseini, G. A. Ultrasound-mediated drug delivery in cancer therapy: A review. J. Nanosci. Nanotechnol. 2020, 20, 7211–7230.

[83]

Snipstad, S.; Vikedal, K.; Maardalen, M.; Kurbatskaya, A.; Sulheim, E.; De Lange Davies, C. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv. Drug Deliv. Rev. 2021, 177, 113847.

[84]

Zhao, Y. C.; Huang, T.; Zhang, X. D.; Cui, Y. B.; Zhang, L. L.; Li, L. L.; Wang, Z. L. Piezotronic and piezo-phototronic effects on sonodynamic disease therapy. BMEMat 2023, 1, e12006.

[85]

Sennoga, C. A.; Kanbar, E.; Auboire, L.; Dujardin, P. A.; Fouan, D.; Escoffre, J. M.; Bouakaz, A. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin. Drug Deliv. 2017, 14, 1031–1043.

[86]

El Kaffas, A.; Gangeh, M. J.; Farhat, G.; Tran, W. T.; Hashim, A.; Giles, A.; Czarnota, G. J. Tumour vascular shutdown and cell death following ultrasound-microbubble enhanced radiation therapy. Theranostics 2018, 8, 314–327.

[87]
Chen, S.; Zhu, P.; Mao, L. J.; Wu, W. C.; Lin, H.; Xu, D. L.; Lu, X. Y.; Shi, J. L. Piezocatalytic medicine: An emerging frontier using piezoelectric materials for biomedical applications. Adv. Mater., in press, https://doi.org/10.1002/adma.202208256.
[88]

Zhu, P.; Chen, Y.; Shi, J. L. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv. Mater. 2020, 32, 2001976.

[89]

Zhao, Y. C.; Wang, S. B.; Ding, Y. M.; Zhang, Z. Y.; Huang, T.; Zhang, Y. L.; Wan, X. Y.; Wang, Z. L.; Li, L. L. Piezotronic effect-augmented Cu2−xO-BaTiO3 sonosensitizers for multifunctional cancer dynamic therapy. ACS Nano 2022, 16, 9304–9316.

[90]

Huang, G. M.; Qiu, Y.; Yang, F. F.; Xie, J. G.; Chen, X.; Wang, L. L.; Yang, H. H. Magnetothermally triggered free-radical generation for deep-seated tumor treatment. Nano Lett. 2021, 21, 2926–2931.

[91]

Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683.

[92]

Zhang, Y.; Wang, Y. Y.; Zhou, Q.; Chen, X. Y.; Jiao, W. B.; Li, G. L.; Peng, M. L.; Liu, X. L.; He, Y.; Fan, H. M. Precise regulation of enzyme–nanozyme cascade reaction kinetics by magnetic actuation toward efficient tumor therapy. ACS Appl. Mater. Interfaces 2021, 13, 52395–52405.

[93]

Li, P.; Lee, G. H.; Kim, S. Y.; Kwon, S. Y.; Kim, H. R.; Park, S. From diagnosis to treatment: Recent advances in patient-friendly biosensors and implantable devices. ACS Nano 2021, 15, 1960–2004.

[94]

Marland, J. R. K.; Gray, M. E.; Dunare, C.; Blair, E. O.; Tsiamis, A.; Sullivan, P.; González-Fernández, E.; Greenhalgh, S. N.; Gregson, R.; Clutton, R. E. et al. Real-time measurement of tumour hypoxia using an implantable microfabricated oxygen sensor. Sens. Bio Sens. Res. 2020, 30, 100375.

[95]

Gil, B.; Ip, H.; Kassanos, P.; Lo, B.; Yang, G. Z.; Anastasova, S. Smart implanted access port catheter for therapy intervention with pH and lactate biosensors. Mater. Today Bio 2022, 15, 100298.

[96]

Wang, L. Y.; Xie, S. L.; Wang, Z. Y.; Liu, F.; Yang, Y. F.; Tang, C. Q.; Wu, X. Y.; Liu, P.; Li, Y. J.; Saiyin, H. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 2020, 4, 159–171.

[97]

Sonmezoglu, S.; Fineman, J. R.; Maltepe, E.; Maharbiz, M. M. Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant. Nat. Biotechnol. 2021, 39, 855–864.

[98]

Zhang, Y. H.; Muthuraman, P.; Andino-Pavlovsky, V.; Uguz, I.; Elloian, J.; Shepard, K. L. Augmented ultrasonography with implanted CMOS electronic motes. Nat. Commun. 2022, 13, 3521.

[99]

Guo, H. X.; Bai, W. B.; Ouyang, W.; Liu, Y. H.; Wu, C. S.; Xu, Y. M.; Weng, Y.; Zang, H.; Liu, Y. M.; Jacobson, L. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 2022, 13, 3009.

[100]

Vaddiraju, S.; Tomazos, I.; Burgess, D. J.; Jain, F. C.; Papadimitrakopoulos, F. Emerging synergy between nanotechnology and implantable biosensors: A review. Biosens. Bioelectron. 2010, 25, 1553–1565.

[101]

Shin, G.; Gomez, A. M.; Al-Hasani, R.; Jeong, Y. R.; Kim, J.; Xie, Z. Q.; Banks, A.; Lee, S. M.; Han, S. Y.; Yoo, C. J. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 2017, 93, 509–521.e3.

[102]

Nelson, B. D.; Karipott, S. S.; Wang, Y.; Ong, K. G. Wireless technologies for implantable devices. Sensors 2020, 20, 4604.

[103]

Haque, S. U.; Duteanu, N.; Ciocan, S.; Nasar, A.; Inamuddin. A review: Evolution of enzymatic biofuel cells. J. Environ. Manage. 2021, 298, 113483.

[104]

Wang, L. L.; Shao, H. H.; Lu, X. Z.; Wang, W. J.; Zhang, J. R.; Song, R. B.; Zhu, J. J. A glucose/O2 fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation. Chem. Sci. 2018, 9, 8482–8491.

[105]

Wang, L. L.; Zhang, J. R.; Wu, X. G.; Zhu, J. J. Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. TrAC Trends Anal. Chem. 2022, 146, 116476.

[106]

Jin, X.; Bandodkar, A. J.; Fratus, M.; Asadpour, R.; Rogers, J. A.; Alam, M. A. Modeling, design guidelines, and detection limits of self-powered enzymatic biofuel cell-based sensors. Biosens. Bioelectron. 2020, 168, 112493.

[107]

Zhang, J. L.; Wang, Y. H.; Huang, K.; Huang, K. J.; Jiang, H.; Wang, X. M. Enzyme-based biofuel cells for biosensors and in vivo power supply. Nano Energy 2021, 84, 105853.

[108]

Zhang, D. Z.; Wang, D. Y.; Xu, Z. Y.; Zhang, X. X.; Yang, Y.; Guo, J. Y.; Zhang, B.; Zhao, W. H. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord. Chem. Rev. 2021, 427, 213597.

[109]

Zhu, M. L.; Yi, Z. R.; Yang, B.; Lee, C. Making use of nanoenergy from human–nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016.

[110]

Song, Y. D.; Wang, N.; Hu, C. S.; Wang, Z. L.; Yang, Y. Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano Energy 2021, 84, 105919.

[111]

Mazzotta, A.; Carlotti, M.; Mattoli, V. Conformable on-skin devices for thermo-electro-tactile stimulation: Materials, design, and fabrication. Mater. Adv. 2021, 2, 1787–1820.

[112]

Rebelo, R.; Barbosa, A. I.; Correlo, V. M.; Reis, R. L. An outlook on implantable biosensors for personalized medicine. Engineering 2021, 7, 1696–1699.

[113]

Ashammakhi, N.; Hernandez, A. L.; Unluturk, B. D.; Quintero, S. A.; Barros, N. R.; Hoque Apu, E.; Bin Shams, A.; Ostrovidov, S.; Li, J. X.; Contag, C. et al. Biodegradable implantable sensors: Materials design, fabrication, and applications. Adv. Funct. Mater. 2021, 31, 2104149.

[114]

Rodrigues, D.; Barbosa, A. I.; Rebelo, R.; Kwon, I. K.; Reis, R. L.; Correlo, V. M. Skin-integrated wearable systems and implantable biosensors: A comprehensive review. Biosensors 2020, 10, 79.

[115]

Chen, Y. F.; Kim, Y. S.; Tillman, B. W.; Yeo, W. H.; Chun, Y. Advances in materials for recent low-profile implantable bioelectronics. Materials 2018, 11, 522.

[116]

Arciola, C. R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation, and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409.

[117]

Wang, Y. M.; Wang, F.; Zhang, H.; Yu, B.; Cong, H. L.; Shen, Y. Q. Antibacterial material surfaces/interfaces for biomedical applications. Appl. Mater. Today 2021, 25, 101192.

[118]

Duan, S.; Wu, R. N.; Xiong, Y. H.; Ren, H. M.; Lei, C. Y.; Zhao, Y. Q.; Zhang, X. Y.; Xu, F. J. Multifunctional antimicrobial materials: From rational design to biomedical applications. Prog. Mater. Sci. 2022, 125, 100887.

[119]

Wang, Y.; Papadimitrakopoulos, F.; Burgess, D. J. Polymeric “smart” coatings to prevent foreign body response to implantable biosensors. J. Controlled Release 2013, 169, 341–347.

[120]

Yu, B. Z.; Wang, C. Y.; Ju, Y. M.; West, L.; Harmon, J.; Moussy, Y.; Moussy, F. Use of hydrogel coating to improve the performance of implanted glucose sensors. Biosens. Bioelectron. 2008, 23, 1278–1284.

[121]

Reith, G.; Schmitz-Greven, V.; Hensel, K. O.; Schneider, M. M.; Tinschmann, T.; Bouillon, B.; Probst, C. Metal implant removal: Benefits and drawbacks—A patient survey. BMC Surg. 2015, 15, 96.

[122]

Zheng, Y. F.; Gu, X. N.; Witte, F. Biodegradable metals. Mater. Sci. Eng.: R: Rep. 2014, 77, 1–34.

[123]

Li, C. M.; Guo, C. C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M. J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S. J.; Kaplan, D. L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61–81.

[124]

Han, S. A.; Lee, J. H.; Seung, W. C.; Lee, J. W.; Kim, S. W.; Kim, J. H. Patchable and implantable 2D nanogenerator. Small 2021, 17, e1903519.

[125]

Koo, J. H.; Song, J. K.; Kim, D. H.; Son, D. Soft implantable bioelectronics. ACS Mater. Lett. 2021, 3, 1528–1540.

[126]

Kim, E. H.; Park, S.; Kim, Y. K.; Moon, M.; Park, J.; Lee, K. J.; Lee, S.; Kim, Y. P. Self-luminescent photodynamic therapy using breast cancer targeted proteins. Sci. Adv. 2020, 6, eaba3009.

[127]

Wang, Y. J.; Gong, N. Q.; Li, Y. J.; Lu, Q. C.; Wang, X.; Li, J. H. Atomic-level nanorings (A-NRs) therapeutic agent for photoacoustic imaging and photothermal/photodynamic therapy of cancer. J. Am. Chem. Soc. 2020, 142, 1735–1739.

[128]

Jiang, M. Y.; Xue, Z. L.; Li, Y. B.; Liu, H. R.; Zeng, S. J.; Hao, J. H. A soft X-ray activated lanthanide scintillator for controllable NO release and gas-sensitized cancer therapy. Nanoscale Horiz. 2020, 5, 268–273.

[129]

Zhou, X.; Li, H. D.; Shi, C.; Xu, F.; Zhang, Z.; Yao, Q. C.; Ma, H.; Sun, W.; Shao, K.; Du, J. J. et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 2020, 253, 120089.

[130]

Ge, M.; Guo, H. Y.; Zong, M.; Chen, Z. X.; Liu, Z.; Lin, H.; Shi, J. L. Bandgap-engineered germanene nanosheets as an efficient photodynamic agent for cancer therapy. Angew. Chem., Int. Ed. 2023, 62, e202215795.

[131]

Wang, X. W.; Zhong, X. Y.; Bai, L. X.; Xu, J.; Gong, F.; Dong, Z. L.; Yang, Z. J.; Zeng, Z. J.; Liu, Z.; Cheng, L. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6527–6537.

[132]

Wang, L. W.; Zhang, X. D.; You, Z.; Yang, Z. W.; Guo, M. Y.; Guo, J. W.; Liu, H.; Zhang, X. Y.; Wang, Z.; Wang, A. Z. et al. A molybdenum disulfide nanozyme with charge-enhanced activity for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew. Chem., Int. Ed. 2023, 62, e202217448.

[133]

Ma, K. S.; Qi, G. H.; Wang, B.; Yu, T. F.; Zhang, Y.; Li, H. J.; Kitte, S. A.; Jin, Y. D. Ultrasound-activated Au/ZnO-based Trojan nanogenerators for combined targeted electro-stimulation and enhanced catalytic therapy of tumor. Nano Energy 2021, 87, 106208.

[134]

Li, C.; Yang, X. Q.; An, J.; Cheng, K.; Hou, X. L.; Zhang, X. S.; Hu, Y. G.; Liu, B.; Zhao, Y. D. Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics 2020, 10, 867–879.

[135]

Zhong, X. Y.; Wang, X. W.; Cheng, L.; Tang, Y. A.; Zhan, G. T.; Gong, F.; Zhang, R.; Hu, J.; Liu, Z.; Yang, X. L. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 30, 1907954.

[136]

Zhang, H. L.; Li, J. J.; Chen, Y.; Wu, J. Y.; Wang, K.; Chen, L. J.; Wang, Y.; Jiang, X. W.; Liu, Y. Y.; Wu, Y. L. et al. Magneto-electrically enhanced intracellular catalysis of FePt–FeC heterostructures for chemodynamic therapy. Adv. Mater. 2021, 33, 2100472.

[137]

Zhou, J.; Ma, Z.; Hong, X.; Wu, H. M.; Ma, S. Y.; Li, Y.; Chen, D. J.; Yu, H. Y.; Huang, X. J. Top–down strategy of implantable biosensor using adaptable, porous hollow fibrous membrane. ACS Sens. 2019, 4, 931–937.

[138]

Molinnus, D.; Drinic, A.; Iken, H.; Kröger, N.; Zinser, M.; Smeets, R.; Köpf, M.; Kopp, A.; Schöning, M. J. Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk. Biosens. Bioelectron. 2021, 183, 113204.

[139]

Nawito, M.; Richter, H.; Stett, A.; Burghartz, J. N. A programmable energy efficient readout chip for a multiparameter highly integrated implantable biosensor system. Adv. Radio Sci. 2015, 13, 103–108.

[140]

Psychoyios, V. N.; Nikoleli, G. P.; Tzamtzis, N.; Nikolelis, D. P.; Psaroudakis, N.; Danielsson, B.; Israr, M. Q.; Willander, M. Potentiometric cholesterol biosensor based on ZnO nanowalls and stabilized polymerized lipid film. Electroanalysis 2013, 25, 367–372.

[141]

Pathiraja, A. A.; Weerakkody, R. A.; Von Roon, A. C.; Ziprin, P.; Bayford, R. The clinical application of electrical impedance technology in the detection of malignant neoplasms: A systematic review. J. Transl. Med. 2020, 18, 227.

[142]

Nguyen, K. T.; Kim, H. Y.; Park, J. O.; Choi, E.; Kim, C. S. Tripolar electrode electrochemical impedance spectroscopy for endoscopic devices toward early colorectal tumor detection. ACS Sens. 2022, 7, 632–640.

[143]

Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76.

[144]

Harary, M.; Dolmans, R. G. F.; Gormley, W. B. Intracranial pressure monitoring-review and avenues for development. Sensors 2018, 18, 465.

[145]

Kidoguchi, S.; Sugano, N.; Tokudome, G.; Yokoo, T.; Yano, Y.; Hatake, K.; Nishiyama, A. New concept of onco-hypertension and future perspectives. Hypertension 2021, 77, 16–27.

[146]

Boutry, C. M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A. C.; Pfattner, R.; Niu, S. M.; Li, J. H.; Claverie, J. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 2019, 3, 47–57.

[147]

Okamoto, K.; Watanabe, T.; Komeda, Y.; Kono, T.; Takashima, K.; Okamoto, A.; Kono, M.; Yamada, M.; Arizumi, T.; Kamata, K. et al. Risk factors for postoperative bleeding in endoscopic submucosal dissection of colorectal tumors. Oncology 2017, 93, 35–42.

[148]

Abboud, T.; Hahn, G.; Just, A.; Paidhungat, M.; Nazarenus, A.; Mielke, D.; Rohde, V. An insight into electrical resistivity of white matter and brain tumors. Brain Stimul. 2021, 14, 1307–1316.

[149]

Yang, L.; Zhao, Y.; Xu, W. J.; Shi, E. Z.; Wei, W. J.; Li, X. M.; Cao, A. Y.; Cao, Y. P.; Fang, Y. Highly crumpled all-carbon transistors for brain activity recording. Nano Lett. 2017, 17, 71–77.

[150]

Fan, J. L.; Xuan, M. J.; Zhao, P. K.; Loznik, M.; Chen, J. L.; Kiessling, F.; Zheng, L. F.; Herrmann, A. Ultrasound responsive microcapsules for antibacterial nanodrug delivery. Nano Res. 2023, 16, 2738–2748.

Nano Research
Pages 11653-11666
Cite this article:
Jiang Z, Yue Z, Liu Z, et al. Recent advances of implantable systems and devices in cancer therapy and sensing. Nano Research, 2023, 16(9): 11653-11666. https://doi.org/10.1007/s12274-023-5808-6
Topics:
Part of a topical collection:

1054

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 28 February 2023
Revised: 30 April 2023
Accepted: 05 May 2023
Published: 30 June 2023
© Tsinghua University Press 2023
Return