Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Liver fibrosis and hepatic carcinoma (HCC) pose a huge challenge worldwide due to the lack of effective treatment options for end-stage liver diseases. According to their functions and roles, hepatic myofibroblasts mainly include nontumoral fibroblasts (mainly activated hepatic stellate cells (HSCs)), which are involved in the wound-healing process of liver fibrosis, and cancer-associated fibroblasts (CAFs) in hepatic HCC. HSCs play a significant role in regulating extracellular matrix (ECM) deposition in progressive liver fibrosis. CAFs can be derived from activated HSCs and differentiate into ECM-producing myofibroblasts. Moreover, growing evidence shows that CAFs are the primary regulators of the HCC microenvironment, releasing growth factors and cytokines and suppressing the antitumor immune response. Combined therapeutic strategies show reduced drug resistance and side effects. Nanotechnology-based combined strategies aim to improve the delivery efficiency of various therapeutic agents with reduced toxicity via multiple mechanisms. In this review, we will discuss recent developments in combinational strategies based on nanotechnology that regulate myofibroblasts and the diseased microenvironment for liver fibrosis and HCC treatment. We will also identify the major challenges that the field is facing and offer some insights for future drug discovery.
Ruan, Q.; Wang, H. L.; Burke, L. J.; Bridle, K. R.; Li, X. X.; Zhao, C. X.; Crawford, D. H. G.; Roberts, M. S.; Liang, X. W. Therapeutic modulators of hepatic stellate cells for hepatocellular carcinoma. Int. J. Cancer 2020, 147, 1519–1527.
Li, L. J.; Wang, H. Y.; Ong, Z. Y.; Xu, K. J.; Ee, P. L. R.; Zheng, S. S.; Hedrick, J. L.; Yang, Y. Y. Polymer- and lipid-based nanoparticle therapeutics for the treatment of liver diseases. Nano Today 2010, 5, 296–312.
Schon, H. T.; Bartneck, M.; Borkham-Kamphorst, E.; Nattermann, J.; Lammers, T.; Tacke, F.; Weiskirchen, R. Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis. Front. Pharmacol. 2016, 7, 33.
Song, Y.; Kim, S. H.; Kim, K. M.; Choi, E. K.; Kim, J.; Seo, H. R. Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci. Rep. 2016, 6, 36750.
Chen, J.; Jin, R. N.; Zhao, J.; Liu, J. H.; Ying, H. N.; Yan, H.; Zhou, S. J.; Liang, Y. L.; Huang, D. Y.; Liang, X. et al. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett. 2015, 367, 1–11.
Azzariti, A.; Mancarella, S.; Porcelli, L.; Quatrale, A. E.; Caligiuri, A.; Lupo, L.; Dituri, F.; Giannelli, G. Hepatic stellate cells induce hepatocellular carcinoma cell resistance to sorafenib through the laminin-332/α3 integrin axis recovery of focal adhesion kinase ubiquitination. Hepatology 2016, 64, 2103–2117.
Zhou, L. Y.; Li, Y. F.; Liang, Q. W.; Liu, J. X.; Liu, Y. H. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J. Drug Targeting 2022, 30, 577–588.
Qi, Y. X.; Jing, S. W.; He, S. S.; Xiong, H. J.; Yang, G. H.; Huang, Y. B.; Jin, N. Y. The associated killing of hepatoma cells using multilayer drug-loaded mats combined with fast neutron therapy. Nano Res. 2021, 14, 778–787.
Chen, Z. J.; Jain, A.; Liu, H.; Zhao, Z.; Cheng, K. Targeted drug delivery to hepatic stellate cells for the treatment of liver fibrosis. J. Pharmacol. Exp. Ther. 2019, 370, 695–702.
Shilpi, S.; Shivvedi, R.; Gurnany, E.; Dixit, S.; Khatri, K.; Dwivedi, D. K. Drug targeting strategies for liver cancer and other liver diseases. MOJ Drug Des. Develop. Ther. 2018, 2, 171–177.
Feng, S. N.; Ni, P. Y.; Gong, Y.; Geng, B. J.; Li, H.; Miao, C. L.; Fan, R. Y.; Galstyan, L.; Pan, D. Y.; Chen, F. X. et al. Synergistic anti-tumor therapy by a homotypic cell membrane-cloaked biomimetic nanocarrier with exceptionally potent activity against hepatic carcinoma. Nano Res. 2022, 15, 8255–8269.
Kang, K. A.; Jun, D. W.; Kim, M. S.; Kwon, H. J.; Nguyen, M. H. Prevalence of significant hepatic fibrosis using magnetic resonance elastography in a health check-up clinic population. Aliment. Pharmacol. Ther. 2020, 51, 388–396.
Ciardullo, S.; Perseghin, G. Prevalence of NAFLD, MAFLD and associated advanced fibrosis in the contemporary United States population. Liver Int. 2021, 41, 1290–1293.
Treeprasertsuk, S.; Piyachaturawat, P.; Soontornmanokul, T.; Wisedopas-Klaikaew, N.; Komolmit, P.; Tangkijavanich, P. Accuracy of noninvasive scoring systems to assess advanced liver fibrosis in Thai patients with nonalcoholic fatty liver disease. Asian Biomed. 2017, 10, s49–s55.
Ballestri, S.; Mantovani, A.; Baldelli, E.; Lugari, S.; Maurantonio, M.; Nascimbeni, F.; Marrazzo, A.; Romagnoli, D.; Targher, G.; Lonardo, A. Liver fibrosis biomarkers accurately exclude advanced fibrosis and are associated with higher cardiovascular risk scores in patients with NAFLD or viral chronic liver disease. Diagnostics 2021, 11, 98.
Ramachandran, P.; Henderson, N. C. Antifibrotics in chronic liver disease: Tractable targets and translational challenges. Lancet Gastroenterol. Hepatol. 2016, 1, 328–340.
Luo, J. W.; Zhang, P.; Zhao, T.; Jia, M. D.; Yin, P.; Li, W. H.; Zhang, Z. R.; Fu, Y.; Gong, T. Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis. ACS Nano 2019, 13, 3910–3923.
Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D. A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med. 2020, 245, 96–108.
Thompson, A. I.; Conroy, K. P.; Henderson, N. C. Hepatic stellate cells: Central modulators of hepatic carcinogenesis. BMC Gastroenterol. 2015, 15, 63.
Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D. G.; Egeblad, M.; Evans, R. M.; Fearon, D.; Greten, F. R.; Hingorani, S. R.; Hunter, T. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186.
Cannito, S.; Novo, E.; Parola, M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv. Drug Deliv. Rev. 2017, 121, 57–84.
Yazdani, S.; Bansal, R.; Prakash, J. Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv. Drug Deliv. Rev. 2017, 121, 101–116.
Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008, 134, 1655–1669.
Friedman, S. L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008, 88, 125–172.
Tsuchida, T.; Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411.
Coulouarn, C.; Clément, B. Stellate cells and the development of liver cancer: Therapeutic potential of targeting the stroma. J. Hepatol. 2014, 60, 1306–1309.
Affo, S.; Yu, L. X.; Schwabe, R. F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. Mech. Dis. 2017, 12, 153–186.
Baglieri, J.; Brenner, D. A.; Kisseleva, T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int. J. Mol. Sci. 2019, 20, 1723.
Yoshiji, H.; Kuriyama, S.; Noguchi, R.; Ikenaka, Y.; Yoshii, J.; Yanase, K.; Namisaki, T.; Kitade, M.; Yamazaki, M.; Asada, K. et al. Amelioration of liver fibrogenesis by dual inhibition of PDGF and TGF-β with a combination of imatinib mesylate and ACE inhibitor in rats. Int. J. Mol. Med. 2006, 17, 899–904.
Anstee, Q. M.; Neuschwander-Tetri, B. A.; Wong, V. W. S.; Abdelmalek, M. F.; Younossi, Z. M.; Yuan, J. C.; Pecoraro, M. L.; Seyedkazemi, S.; Fischer, L.; Bedossa, P. et al. Cenicriviroc for the treatment of liver fibrosis in adults with nonalcoholic steatohepatitis: AURORA Phase 3 study design. Contemp. Clin. Trials 2020, 89, 105922.
Ebrahimi, H.; Naderian, M.; Sohrabpour, A. A. New concepts on reversibility and targeting of liver fibrosis; a review article. Middle East J. Dig. Dis. 2018, 10, 133–148.
Sung, Y. C.; Liu, Y. C.; Chao, P. H.; Chang, C. C.; Jin, P. R.; Lin, T. T.; Lin, J. A.; Cheng, H. T.; Wang, J.; Lai, C. P. et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 2018, 8, 894–905.
Kuang, P. H.; Zhao, W. X.; Su, W. X.; Zhang, Z. Q.; Zhang, L.; Liu, J. M.; Ren, G. L.; Yin, Z. Y.; Wang, X. M. 18β-glycyrrhetinic acid inhibits hepatocellular carcinoma development by reversing hepatic stellate cell-mediated immunosuppression in mice. Int. J. Cancer 2013, 132, 1831–1841.
Li, J. R.; Li, H. F.; Yu, Y.; Liu, Y.; Liu, Y. Z.; Ma, Q.; Zhang, L.; Lu, X.; Wang, X. Y.; Chen, Z. L. et al. Mannan-binding lectin suppresses growth of hepatocellular carcinoma by regulating hepatic stellate cell activation via the ERK/COX-2/PGE2 pathway. Oncoimmunology 2019, 8, e1527650.
Peng, H.; Zhu, E. W.; Zhang, Y. W. Advances of cancer-associated fibroblasts in liver cancer. Biomarker Res. 2022, 10, 59.
Moreno, M.; Gonzalo, T.; Kok, R. J.; Sancho-Bru, P.; van Beuge, M.; Swart, J.; Prakash, J.; Temming, K.; Fondevila, C.; Beljaars, L. et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology 2010, 51, 942–952.
Huang, M. L.; Li, X.; Meng, Y.; Xiao, B.; Ma, Q.; Ying, S. S.; Wu, P. S.; Zhang, Z. S. Upregulation of angiotensin-converting enzyme (ACE) 2 in hepatic fibrosis by ACE inhibitors. Clin. Exp. Pharmacol. Physiol. 2010, 37, e1–e6.
Ding, N.; Hah, N.; Yu, R. T.; Sherman, M. H.; Benner, C.; Leblanc, M.; He, M. X.; Liddle, C.; Downes, M.; Evans, R. M. BRD4 is a novel therapeutic target for liver fibrosis. Proc. Natl. Acad. Sci. USA 2015, 112, 15713–15718.
Ding, N.; Yu, R. T.; Subramaniam, N.; Sherman, M. H.; Wilson, C.; Rao, R.; Leblanc, M.; Coulter, S.; He, M. X.; Scott, C. et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 2013, 153, 601–613.
Chen, Y.; Huang, Y. H.; Reiberger, T.; Duyverman, A. M.; Huang, P. G.; Samuel, R.; Hiddingh, L.; Roberge, S.; Koppel, C.; Lauwers, G. Y. et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 2014, 59, 1435–1447.
Lee, Y. A.; Wallace, M. C.; Friedman, S. L. Pathobiology of liver fibrosis: A translational success story. Gut 2015, 64, 830–841.
Rozenfeld, R.; Gupta, A.; Gagnidze, K.; Lim, M. P.; Gomes, I.; Lee-Ramos, D.; Nieto, N.; Devi, L. A. AT1R-CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 2011, 30, 2350–2363.
Chakraborty, J. B.; Mann, D. A. NF-κB signalling: Embracing complexity to achieve translation. J. Hepatol. 2010, 52, 258–291.
Wright, M. C.; Issa, R.; Smart, D. E.; Trim, N.; Murray, G. I.; Primrose, J. N.; Arthur, M. J. P.; Iredale, J. P.; Mann, D. A. Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology 2001, 121, 685–698.
Crespo, I.; San-Miguel, B.; Fernández, A.; Ortiz de Urbina, J.; González-Gallego, J.; Tuñón, M. J. Melatonin limits the expression of profibrogenic genes and ameliorates the progression of hepatic fibrosis in mice. Transl. Res. 2015, 165, 346–357.
Choi, H. S.; Kang, J. W.; Lee, S. M. Melatonin attenuates carbon tetrachloride-induced liver fibrosis via inhibition of necroptosis. Transl. Res. 2015, 166, 292–303.
Wei, Y.; Kang, X. L.; Wang, X. The peripheral cannabinoid receptor 1 antagonist VD60 efficiently inhibits carbon tetrachloride-intoxicated hepatic fibrosis progression. Exp. Biol. Med. 2014, 239, 183–192.
Xia, J. L.; Dai, C. S.; Michalopoulos, G. K.; Liu, Y. H. Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am. J. Pathol. 2006, 168, 1500–1512.
Oh, Y.; Park, O.; Swierczewska, M.; Hamilton, J. P.; Park, J. S.; Kim, T. H.; Lim, S. M.; Eom, H.; Jo, D. G.; Lee, C. E. et al. Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology 2016, 64, 209–223.
Zhu, S. S.; Wang, T.; Luo, F.; Li, H. W.; Jia, Q.; He, T. P.; Wu, H. F.; Zou, T. B. Astaxanthin inhibits proliferation and induces apoptosis of LX-2 cells by regulating the miR-29b/Bcl-2 pathway. Mol. Med. Rep. 2019, 19, 3537–3547.
Huang, Y. H.; Chen, M. H.; Guo, Q. L.; Chen, Y. X.; Zhang, L. J.; Chen, Z. X.; Wang, X. Z. Interleukin-10 promotes primary rat hepatic stellate cell senescence by upregulating the expression levels of p53 and p21. Mol. Med. Rep. 2018, 17, 5700–5707.
Yang, J. F.; Lu, Y. C.; Yang, P. P.; Chen, Q. F.; Wang, Y.; Ding, Q.; Xu, T.; Li, X. F.; Li, C. Y.; Huang, C. et al. MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2. J. Cell. Physiol. 2019, 234, 7587–7599.
Wang, S.; Kim, J.; Lee, C.; Oh, D.; Han, J.; Kim, T. J.; Kim, S. W.; Seo, Y. S.; Oh, S. H.; Jung, Y. Tumor necrosis factor-inducible gene 6 reprograms hepatic stellate cells into stem-like cells, which ameliorates liver damage in mouse. Biomaterials 2019, 219, 119375.
Kong, X. N.; Feng, D. C.; Mathews, S.; Gao, B. Hepatoprotective and anti-fibrotic functions of interleukin-22: Therapeutic potential for the treatment of alcoholic liver disease. J. Gastroenterol. Hepatol. 2013, 28, 56–60.
Kong, X. N.; Feng, D. C.; Wang, H.; Hong, F.; Bertola, A.; Wang, F. S.; Gao, B. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 2012, 56, 1150–1159.
Chen, E. R.; Cen, Y.; Lu, D. H.; Luo, W.; Jiang, H. X. IL-22 inactivates hepatic stellate cells via downregulation of the TGF-β1/notch signaling pathway. Mol. Med. Rep. 2018, 17, 5449–5453.
Zhang, Z. L.; Yao, Z.; Zhao, S. F.; Shao, J. J.; Chen, A. P.; Zhang, F.; Zheng, S. Z. Interaction between autophagy and senescence is required for dihydroartemisinin to alleviate liver fibrosis. Cell Death Dis. 2017, 8, e2886–e2886.
Zhang, J.; Wang, M.; Zhang, Z. W.; Luo, Z. G.; Liu, F.; Liu, J. Celecoxib derivative OSU-03012 inhibits the proliferation and activation of hepatic stellate cells by inducing cell senescence. Mol. Med. Rep. 2015, 11, 3021–3026.
Chen, Z. W.; Yao, L.; Liu, Y. Y.; Pan, Z.; Peng, S.; Wan, G. G.; Cheng, J. X.; Wang, J. W.; Cao, W. F. Astragaloside IV regulates NF-κB-mediated cellular senescence and apoptosis of hepatic stellate cells to suppress PDGF-BB-induced activation. Exp. Ther. Med. 2019, 18, 3741–3750.
Klein, S.; Klösel, J.; Schierwagen, R.; Körner, C.; Granzow, M.; Huss, S.; Mazar, I. G. R.; Weber, S.; van den Ven, P. F. M.; Pieper-Fürst, U. et al. Atorvastatin inhibits proliferation and apoptosis, but induces senescence in hepatic myofibroblasts and thereby attenuates hepatic fibrosis in rats. Lab. Invest. 2012, 92, 1440–1450.
Cortes, E.; Lachowski, D.; Rice, A.; Chronopoulos, A.; Robinson, B.; Thorpe, S.; Lee, D. A.; Possamai, L. A.; Wang, H. Y.; Pinato, D. J. Tschaharganeh. Retinoic acid receptor-β is downregulated in hepatocellular carcinoma and cirrhosis and its expression inhibits myosin-driven activation and durotaxis in hepatic stellate cells. Hepatology 2019, 69, 785–802.
Hisamori, S.; Tabata, C.; Kadokawa, Y.; Okoshi, K.; Tabata, R.; Mori, A.; Nagayama, S.; Watanabe, G.; Kubo, H.; Sakai, Y. All-trans-retinoic acid ameliorates carbon tetrachloride-induced liver fibrosis in mice through modulating cytokine production. Liver Int. 2008, 28, 1217–1225.
Cortes, E.; Lachowski, D.; Rice, A.; Thorpe, S. D.; Robinson, B.; Yeldag, G.; Lee, D. A.; Ghemtio, L.; Rombouts, K.; Del Río Hernández, A. E. Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor. Oncogene 2019, 38, 2910–2922.
de Souza, I. C. C.; Martins, L. A. M.; de Vasconcelos, M.; de Oliveira, C. M.; Barbé-Tuana, F.; Andrade, C. B.; Pettenuzzo, L. F.; Borojevic, R.; Margis, R.; Guaragna, R. et al. Resveratrol regulates the quiescence-like induction of activated stellate cells by modulating the PPARγ/SIRT1 ratio. J. Cell. Biochem. 2015, 116, 2304–2312.
Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 2019, 65, 37–55.
Li, R.; Li, Z.; Feng, Y. R.; Yang, H.; Shi, Q. X.; Tao, Z.; Cheng, J. Q.; Lu, X. F. PDGFRβ-targeted TRAIL specifically induces apoptosis of activated hepatic stellate cells and ameliorates liver fibrosis. Apoptosis 2020, 25, 105–119.
de Oliveira da Silva, B.; Ramos, L. F.; Moraes, K. C. M. Molecular interplays in hepatic stellate cells: Apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis. Cell Biol. Int. 2017, 41, 946–959.
Ezhilarasan, D.; Sokal, E.; Najimi, M. Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreatic Dis. Int. 2018, 17, 192–197.
Huang, Y.; Deng, X.; Liang, J. Modulation of hepatic stellate cells and reversibility of hepatic fibrosis. Exp. Cell Res. 2017, 352, 420–426.
Lujambio, A.; Akkari, L.; Simon, J.; Grace, D.; Tschaharganeh, D. F.; Bolden, J. E.; Zhao, Z.; Thapar, V.; Joyce, J. A.; Krizhanovsky, V. et al. Non-cell-autonomous tumor suppression by p53. Cell 2013, 153, 449–460.
Simon, T. G.; King, L. Y.; Zheng, H.; Chung, R. T. Statin use is associated with a reduced risk of fibrosis progression in chronic hepatitis C. J. Hepatol. 2015, 62, 18–23.
Song, Q. L.; Wang, H. R.; Yang, J. F.; Gao, H.; Wang, K.; Wang, H.; Zhang, Y.; Wang, L. A “cluster bomb” oral drug delivery system to sequentially overcome the multiple absorption barriers. Chin. Chem. Lett. 2022, 33, 1577–1583.
Tang, W.; Zhao, Z. B.; Chong, Y. Y.; Wu, C. F.; Liu, Q. Z.; Yang, J. B.; Zhou, R. B.; Lian, Z. X.; Liang, G. L. Tandem enzymatic self-assembly and slow release of dexamethasone enhances its antihepatic fibrosis effect. ACS Nano 2018, 12, 9966–9973.
Lee, J.; Byun, J.; Shim, G.; Oh, Y. K. Fibroblast activation protein activated antifibrotic peptide delivery attenuates fibrosis in mouse models of liver fibrosis. Nat. Commun. 2022, 13, 1516.
Li, F.; Wang, J. Y. Targeted delivery of drugs for liver fibrosis. Expert Opin. Drug Delivery 2009, 6, 531–541.
Gracia-Sancho, J.; Caparrós, E.; Fernández-Iglesias, A.; Francés, R. Role of liver sinusoidal endothelial cells in liver diseases. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 411–431.
Kumar, V.; Xin, X. F.; Ma, J. Y.; Tan, C.; Osna, N.; Mahato, R. I. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv. Drug Deliv. Rev. 2021, 176, 113888.
Lafoz, E.; Ruart, M.; Anton, A.; Oncins, A.; Hernández-Gea, V. The endothelium as a driver of liver fibrosis and regeneration. Cells 2020, 9, 929.
Zhou, L. Y.; Liang, Q. W.; Li, Y. F.; Cao, Y. J.; Li, J.; Yang, J. Y.; Liu, J. X.; Bi, J. W.; Liu, Y. H. Collagenase-I decorated co-delivery micelles potentiate extracellular matrix degradation and hepatic stellate cell targeting for liver fibrosis therapy. Acta Biomater. 2022, 152, 235–254.
Hassan, R.; Tammam, S. N.; El Safy, S.; Abdel-Halim, M.; Asimakopoulou, A.; Weiskirchen, R.; Mansour, S. Prevention of hepatic stellate cell activation using JQ1-and atorvastatin-loaded chitosan nanoparticles as a promising approach in therapy of liver fibrosis. Eur. J. Pharm. Biopharm. 2019, 134, 96–106.
Qiao, J. B.; Fan, Q. Q.; Zhang, C. L.; Lee, J.; Byun, J.; Xing, L.; Gao, X. D.; Oh, Y. K.; Jiang, H. L. Hyperbranched lipoid-based lipid nanoparticles for bidirectional regulation of collagen accumulation in liver fibrosis. J. Controlled Release 2020, 321, 629–640.
Omar, R.; Yang, J. Q.; Alrushaid, S.; Burczynski, F. J.; Minuk, G. Y.; Gong, Y. W. Inhibition of BMP4 and alpha smooth muscle actin expression in LX-2 hepatic stellate cells by BMP4-siRNA lipid based nanoparticle. J. Pharm. Pharm. Sci. 2018, 21, 119–134.
Wu, J.; Huang, J. S.; Kuang, S. C.; Chen, J. B.; Li, X. X.; Chen, B.; Wang, J.; Cheng, D.; Shuai, X. T. Synergistic MicroRNA therapy in liver fibrotic rat using MRI-visible nanocarrier targeting hepatic stellate cells. Adv. Sci. 2019, 6, 1801809.
Qiao, J. B.; Fan, Q. Q.; Xing, L.; Cui, P. F.; He, Y. J.; Zhu, J. C.; Wang, L. R.; Pang, T.; Oh, Y. K.; Zhang, C.; Jiang, H. L. Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis. J. Controlled Release 2018, 283, 113–125.
Fan, Q. Q.; Zhang, C. L.; Qiao, J. B.; Cui, P. F.; Xing, L.; Oh, Y. K.; Jiang, H. L. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis therapy. Biomaterials 2020, 230, 119616.
Chow, L. N.; Schreiner, P.; Ng, B. Y. Y.; Lo, B.; Hughes, M. R.; Scott, R. W.; Gusti, V.; Lecour, S.; Simonson, E.; Manisali, I. et al. Impact of a CXCL12/CXCR4 antagonist in bleomycin (BLM) induced pulmonary fibrosis and carbon tetrachloride (CCl4) induced hepatic fibrosis in mice. PLoS One 2016, 11, e0151765.
Hong, F.; Tuyama, A.; Lee, T. F.; Loke, J.; Agarwal, R.; Cheng, X.; Garg, A.; Fiel, M. I.; Schwartz, M.; Walewski, J. et al. Hepatic stellate cells express functional CXCR4: Role in stromal cell-derived factor-1α-mediated stellate cell activation. Hepatology 2009, 49, 2055–2067.
Ullah, A.; Wang, K. K.; Wu, P. K.; Oupicky, D.; Sun, M. J. CXCR4-targeted liposomal mediated co-delivery of pirfenidone and AMD3100 for the treatment of TGFβ-induced HSC-T6 cells activation. Int. J. Nanomed. 2019, 14, 2927–2944.
Liu, C. H.; Chan, K. M.; Chiang, T.; Liu, J. Y.; Chern, G. G.; Hsu, F. F.; Wu, Y. H.; Liu, Y. C.; Chen, Y. Dual-functional nanoparticles targeting CXCR4 and delivering antiangiogenic siRNA ameliorate liver fibrosis. Mol. Pharmaceutics 2016, 13, 2253–2262.
Kim, S. J.; Ise, H.; Kim, E.; Goto, M.; Akaike, T.; Chung, B. H. Imaging and therapy of liver fibrosis using bioreducible polyethylenimine/siRNA complexes conjugated with N-acetylglucosamine as a targeting moiety. Biomaterials 2013, 34, 6504–6514.
Ji, D.; Wang, Q. H.; Zhao, Q.; Tong, H. J.; Yu, M. T.; Wang, M.; Lu, T. L.; Jiang, C. X. Co-delivery of miR-29b and germacrone based on cyclic RGD-modified nanoparticles for liver fibrosis therapy. J. Nanobiotechnol. 2020, 18, 86.
Wan, T.; Zhong, J. F.; Pan, Q.; Zhou, T. H.; Ping, Y.; Liu, X. R. Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases. Sci. Adv. 2022, 8, eabp9435.
Li, F. F.; Zhao, Y.; Cheng, Z. X.; Wang, Y. Z.; Yue, Y. L.; Cheng, X. Y.; Sun, J. Y.; Atabakhshi-kashi, M.; Yao, J. D.; Dou, J. P. et al. Restoration of sinusoid fenestrae followed by targeted nanoassembly delivery of an anti-fibrotic agent improves treatment efficacy in liver fibrosis. Adv. Mater. 2023, 35, 2212206.
Zhang, L. F.; Wang, X. H.; Zhang, C. L.; Lee, J.; Duan, B. W.; Xing, L.; Li, L.; Oh, Y. K.; Jiang, H. L. Sequential nano-penetrators of capillarized liver sinusoids and extracellular matrix barriers for liver fibrosis therapy. ACS Nano 2022, 16, 14029–14042.
Tacke, F. Targeting hepatic macrophages to treat liver diseases. J. Hepatol. 2017, 66, 1300–1312.
Pellicoro, A.; Ramachandran, P.; Iredale, J. P.; Fallowfield, J. A. Liver fibrosis and repair: Immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 2014, 14, 181–194.
Ullah, A.; Chen, G.; Yibang, Z.; Hussain, A.; Shafiq, M.; Raza, F.; Liu, D. J.; Wang, K. K.; Cao, J.; Qi, X. Y. A new approach based on CXCR4-targeted combination liposomes for the treatment of liver fibrosis. Biomater. Sci. 2022, 10, 2650–2664.
Luo, J. W.; Gong, T.; Ma, L. X. Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management. Carbohydr. Polym. 2020, 249, 116887.
Wu, J. L.; Wang, F. Q.; Dong, J. P.; Zhang, S. Q.; Li, N.; Zhao, H. F.; Liu, X. M.; Gao, Z. Q.; Zhang, B.; Tian, G. X. Therapeutic response of multifunctional lipid and micelle formulation in hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2022, 14, 45110–45123.
Li, Z. P.; Wang, F. Q.; Li, Y. Y.; Wang, X. X.; Lu, Q.; Wang, D.; Qi, C. P.; Li, C. L.; Li, Z. H.; Lian, B. et al. Combined anti-hepatocellular carcinoma therapy inhibit drug-resistance and metastasis via targeting “substance P-hepatic stellate cells-hepatocellular carcinoma” axis. Biomaterials 2021, 276, 121003.
Gao, D. Y.; Lin, T. T.; Sung, Y. C.; Liu, Y. C.; Chiang, W. H.; Chang, C. C.; Liu, J. Y.; Chen, Y. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials 2015, 67, 194–203.
Liu, C. H.; Chern, G. J.; Hsu, F. F.; Huang, K. W.; Sung, Y. C.; Huang, H. C.; Qiu, J. T.; Wang, S. K.; Lin, C. C.; Wu, C. H. et al. A multifunctional nanocarrier for efficient TRAIL-based gene therapy against hepatocellular carcinoma with desmoplasia in mice. Hepatology 2018, 67, 899–913.
Hu, M. Y.; Wang, Y.; Xu, L. G.; An, S.; Tang, Y.; Zhou, X. F.; Li, J. J.; Liu, R. H.; Huang, L. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat. Commun. 2019, 10, 2993.
Liu, X. Y.; Zhou, J. Y.; Wu, H. R.; Chen, S. F.; Zhang, L. Y.; Tang, W. S.; Duan, L.; Wang, Y.; McCabe, E.; Hu, M. Y. et al. Fibrotic immune microenvironment remodeling mediates superior anti-tumor efficacy of a nano-PD-L1 trap in hepatocellular carcinoma. Mol. Ther. 2023, 31, 119–133.
Yu, Z.; Guo, J. F.; Liu, Y.; Wang, M. L.; Liu, Z. S.; Gao, Y. Q.; Huang, L. Nano delivery of simvastatin targets liver sinusoidal endothelial cells to remodel tumor microenvironment for hepatocellular carcinoma. J. Nanobiotechnol. 2022, 20, 9.
Li, Y. Y.; Wu, J. L.; Lu, Q.; Liu, X. M.; Wen, J. X.; Qi, X. H.; Liu, J. H.; Lian, B.; Zhang, B.; Sun, H. Y. et al. GA&HA-modified liposomes for co-delivery of aprepitant and curcumin to inhibit drug-resistance and metastasis of hepatocellular carcinoma. Int. J. Nanomed. 2022, 17, 2559–2575.
Wu, J. L.; Qi, C. P.; Wang, H.; Wang, Q.; Sun, J. G.; Dong, J. P.; Yu, G. H.; Gao, Z. Q.; Zhang, B.; Tian, G. X. Curcumin and berberine co-loaded liposomes for anti-hepatocellular carcinoma therapy by blocking the cross-talk between hepatic stellate cells and tumor cells. Front. Pharmacol. 2022, 13, 961788.
Qi, C. P.; Wang, D.; Gong, X.; Zhou, Q. Y.; Yue, X. X.; Li, C. L.; Li, Z. P.; Tian, G. X.; Zhang, B.; Wang, Q. et al. Co-delivery of curcumin and capsaicin by dual-targeting liposomes for inhibition of aHSC-induced drug resistance and metastasis. ACS Appl. Mater. Interfaces 2021, 13, 16019–16035.
Gong, X.; Wu, J. L.; Wen, J. X.; Ding, X. Y.; Xu, N.; Sun, M. M.; Yu, G. H.; Liu, S. Z.; Zhang, B.; Liu, H. Y. Dual-ligand-modified nanoscale liposomes loaded with curcumin and metformin inhibit drug resistance and metastasis of hepatocellular carcinoma. ACS Appl. Nano Mater. 2022, 5, 7063–7077.
Colombo, M.; Tommasini, M. A.; Ninno, E. L.; Rumi, M. G.; Fazio, C.; Dioguardi, M. L. Hepatocellular carcinoma in Italy: Report of a clinical trial with intravenous doxorubicin. Liver 2008, 5, 336–341.
Marin, J. J. G.; Macias, R. I. R.; Monte, M. J.; Romero, M. R.; Asensio, M.; Sanchez-Martin, A.; Cives-Losada, C.; Temprano, A. G.; Espinosa-Escudero, R.; Reviejo, M. et al. Molecular bases of drug resistance in hepatocellular carcinoma. Cancers 2020, 12, 1663.
Tang, W. W.; Chen, Z. Y.; Zhang, W. L.; Cheng, Y.; Zhang, B.; Wu, F.; Wang, Q.; Wang, S. J.; Rong, D. W.; Reiter, F. P. et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Signal Transduct. Target. Ther. 2020, 5, 87.
Kim, M. G.; Shon, Y.; Kim, J.; Oh, Y. K. Selective activation of anticancer chemotherapy by cancer-associated fibroblasts in the tumor microenvironment. J. Natl. Cancer Inst. 2017, 109, djw186.
Pinato, D. J.; Guerra, N.; Fessas, P.; Murphy, R.; Mineo, T.; Mauri, F. A.; Mukherjee, S. K.; Thursz, M.; Wong, C. N.; Sharma, R. et al. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020, 39, 3620–3637.
Yin, Z. Y.; Li, X. W. Immunotherapy for hepatocellular carcinoma. Cancer Lett. 2020, 470, 8–17.
Zheng, C. X.; Liu, X. X.; Kong, Y. Y.; Zhang, L.; Song, Q. L.; Zhao, H. J.; Han, L.; Jiao, J. N.; Feng, Q. H.; Wang, L. Hyperthermia based individual in situ recombinant vaccine enhances lymph nodes drainage for de novo antitumor immunity. Acta Pharm. Sin. B 2022, 12, 3398–3409.
Xu, Y. P.; Huang, Y. H.; Xu, W. Q.; Zheng, X. H.; Yi, X.; Huang, L. Y.; Wang, Y. X.; Wu, K. N. Activated hepatic stellate cells (HSCs) exert immunosuppressive effects in hepatocellular carcinoma by producing complement C3. Onco Targets Ther. 2020, 13, 1497–1505.
Lee, H. W.; Cho, K. J.; Park, J. Y. Current status and future direction of immunotherapy in hepatocellular carcinoma: What do the data suggest. Immune Netw. 2020, 20, e11.
Li, X.; Ramadori, P.; Pfister, D.; Seehawer, M.; Zender, L.; Heikenwalder, M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat. Rev. Cancer 2021, 21, 541–557.
Yang, S. S.; Cai, C. W.; Wang, H. Q.; Ma, X. Q.; Shao, A. W.; Sheng, J. F.; Yu, C. B. Drug delivery strategy in hepatocellular carcinoma therapy. Cell Commun. Signal. 2022, 20, 26.
Lu, Y. F.; Feng, N.; Du, Y. Z.; Yu, R. S. Nanoparticle-based therapeutics to overcome obstacles in the tumor microenvironment of hepatocellular carcinoma. Nanomaterials 2022, 12, 2832.
Hu, X. Y.; Zhu, H.; He, X. Q.; Chen, J. Y.; Xiong, L.; Shen, Y.; Li, J. Y.; Xu, Y. T.; Chen, W. L.; Liu, X. et al. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J. Controlled Release 2023, 355, 85–108.