AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of pH-universal hydrogen evolution freeway in MoO3-MoNi4@Cu core–shell nanowires via synergetic electronic and geometric effect

Xiaodong Chen1Shoufu Cao1Xiaojing Lin1Xiaofei Wei1Zhaojie Wang1( )Hongyu Chen2Chengcheng Hao1Siyuan Liu1( )Shuxian Wei2Daofeng Sun1Xiaoqing Lu1( )
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
College of Science, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

One-dimensional (1D) core–shell MoO3-MoNi4@Cu NWs catalyst optimized by synergetic electronic and geometric effect exhibits excellent hydrogen evolution activity in pH-universal media. Electron-rich MoNi4 generated by Cu NWs supplying electrons enhances water dissociation, while MoO3 doping accelerates H* transfer via hydrogen-bond and hydrogen spillover.

Abstract

Both the adsorption/dissociation of water molecules and hydrogen intermediate (H*) are the major limitations to hydrogen evolution reaction (HER). Herein, the modulation of electronic structure and geometric configuration are combined to design one-dimensional electrocatalyst with outstanding HER activity in a wide pH range. The catalyst was composed of molybdenum trioxide doped molybdenum nickel alloy supported by copper nanowires (MoO3-MoNi4@Cu NWs). As revealed by the experimental characterizations and theoretical calculations, Cu NWs act as the electron donator to MoNi4, resulting in up shift of the d-band center in MoNi4, thus expediting H2O adsorption and dissociation. Moreover, the introduction of amorphous MoO3 sets up a unique geometric configuration on MoNi4 for the accelerated H* transfer via hydrogen-bond and hydrogen spillover. This work provides a synergetic route for constructing HER freeway and promotes further investigations on more versatile electrocatalysis involving H2O or H*.

Electronic Supplementary Material

Video
12274_2023_5826_MOESM2_ESM.mp4
12274_2023_5826_MOESM3_ESM.mp4
Download File(s)
12274_2023_5826_MOESM1_ESM.pdf (3.7 MB)

References

[1]

Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

[2]

An, Y. M.; Long, X.; Ma, M.; Hu, J.; Lin, H.; Zhou, D.; Xing, Z.; Huang, B. L.; Yang, S. H. One-step controllable synthesis of catalytic Ni4Mo/MoOx/Cu nanointerfaces for highly efficient water reduction. Adv. Energy Mater. 2019, 9, 1901454.

[3]

Zhao, Q. Q.; Meng, C.; Kong, D. Q.; Wang, Y. M.; Hu, H.; Chen, X. M.; Han, Y.; Chen, X. D.; Zhou, Y.; Lin, M. C. et al. In situ construction of nickel sulfide nano-heterostructures for highly efficient overall urea electrolysis. ACS Sustainable Chem. Eng. 2021, 9, 15582–15590.

[4]

Yoon, H.; Song, H. J.; Ju, B.; Kim, D. W. Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Res. 2020, 13, 2469–2477.

[5]

Wang, Z. J.; Guo, P.; Cao, S. F.; Chen, H. Y.; Zhou, S. N.; Liu, H. H.; Wang, H. W.; Zhang, J. B.; Liu, S. Y.; Wei, S. X. et al. Contemporaneous inverse manipulation of the valence configuration to preferred Co2+ and Ni3+ for enhanced overall water electrocatalysis. Appl. Catal. B Environ. 2021, 284, 119725.

[6]

Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

[7]

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

[8]

Zhou, M.; Bao, S. J.; Bard, A. J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 2019, 141, 7327–7332.

[9]

Cheng, Z. H.; Xiao, Y. K.; Wu, W. P.; Zhang, X. Q.; Fu, Q.; Zhao, Y.; Qu, L. T. All-pH-tolerant in-plane heterostructures for efficient hydrogen evolution reaction. ACS Nano 2021, 15, 11417–11427.

[10]

Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.

[11]

Gu, M. Z.; Jiang, L.; Zhao, S. R.; Wang, H.; Lin, M.; Deng, X. Y.; Huang, X. M.; Gao, A.; Liu, X. D.; Sun, P. et al. Deciphering the space charge effect of the p–n junction between copper sulfides and molybdenum selenides for efficient water electrolysis in a wide pH range. ACS Nano 2022, 16, 15425–15439.

[12]

Wang, X. Q.; Chen, Y. F.; Yu, B.; Wang, Z. G.; Wang, H. Q.; Sun, B. C.; Li, W. X.; Yang, D. X.; Zhang, W. L. Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for pH-universal hydrogen evolution. Small 2019, 15, 1902613.

[13]

Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Adv. Funct. Mater. 2022, 32, 2107597.

[14]

Jothi, V. R.; Karuppasamy, K.; Maiyalagan, T.; Rajan, H.; Jung, C. Y.; Yi, S. C. Corrosion and alloy engineering in rational design of high current density electrodes for efficient water splitting. Adv. Energy Mater. 2020, 10, 1904020.

[15]

Liu, Z. P.; Zhang, G. X.; Bu, J.; Ma, W. X.; Yang, B.; Zhong, H.; Li, S. M.; Wang, T.; Zhang, J. Single-crystalline Mo-nanowire-mediated directional growth of high-index-faceted MoNi electrocatalyst for ultralong-term alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 36259–36267.

[16]

Sun, H. M.; Yan, Z. H.; Tian, C. Y.; Li, C.; Feng, X.; Huang, R.; Lan, Y. H.; Chen, J.; Li, C. P.; Zhang, Z. H. et al. Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 3857.

[17]

Qian, Q. Z.; Li, Y. P.; Liu, Y.; Guo, Y. M.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Hierarchical multi-component nanosheet array electrode with abundant NiCo/MoNi4 heterostructure interfaces enables superior bifunctionality towards hydrazine oxidation assisted energy-saving hydrogen generation. Chem. Eng. J. 2021, 414, 128818.

[18]

Nairan, A.; Zou, P. C.; Liang, C. W.; Liu, J. X.; Wu, D.; Liu, P.; Yang, C. NiMo solid solution nanowire array electrodes for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 2019, 29, 1903747.

[19]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[20]

Zhao, X. Y.; Tang, K. W.; Lee, C.; Du, C. F.; Yu, H.; Wang, X. W.; Qi, W. H.; Ye, Q.; Yan, Q. Y. Promoting the water-reduction kinetics and alkali tolerance of MoNi4 nanocrystals via a Mo2TiC2Tx induced built-in electric field. Small 2022, 18, 2107541.

[21]

Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

[22]

Liu, J.; Wang, Z. C.; Wu, X. K.; Zhang, D.; Zhang, Y.; Xiong, J.; Wu, Z. X.; Lai, J. P.; Wang, L. Pt doping and strong metal-support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution. J. Mater. Chem. A 2022, 10, 15395–15401.

[23]

Ma, Y. Y.; Lang, Z. L.; Yan, L. K.; Wang, Y. H.; Tan, H. Q.; Feng, K.; Xia, Y. J.; Zhong, J.; Liu, Y.; Kang, Z. H. et al. Highly efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst. Energy Environ. Sci. 2018, 11, 2114–2123.

[24]

Zhou, S. Z.; Jang, H.; Qin, Q.; Hou, L. Q.; Kim, M. G.; Liu, S. G.; Liu, X. E.; Cho, J. Boosting hydrogen evolution reaction by phase engineering and phosphorus doping on Ru/P-TiO2. Angew. Chem., Int. Ed. 2022, 61, e202212196.

[25]

Fan, X. L.; Liu, C.; Wu, M. Y.; Gao, B. X.; Zheng, L. Y.; Zhang, Y. H.; Zhang, H. B.; Gao, Q. S.; Cao, X. M.; Tang, Y. Synergistic effect of dual active sites over Ru/α-MoC for accelerating alkaline hydrogen evolution reaction. Appl. Catal. B Environ. 2022, 318, 121867.

[26]

Kim, J. H.; Kim, J.; Kim, H.; Kim, J.; Ahn, S. H. Facile fabrication of nanostructured NiMo cathode for high-performance proton exchange membrane water electrolyzer. J. Ind. Eng. Chem. 2019, 79, 255–260.

[27]

Song, J. D.; Jin, Y. Q.; Zhang, L.; Dong, P. Y.; Li, J. W.; Xie, F. Y.; Zhang, H.; Chen, J.; Jin, Y. S.; Meng, H. et al. Phase-separated Mo-Ni alloy for hydrogen oxidation and evolution reactions with high activity and enhanced stability. Adv. Energy Mater. 2021, 11, 2003511.

[28]

Lin, X. J.; Cao, S. F.; Chen, X. D.; Chen, H. Y.; Wang, Z. J.; Liu, H. H.; Xu, H.; Liu, S. Y.; Wei, S. X.; Lu, X. Q. Two birds with one stone: Contemporaneously boosting OER activity and kinetics for layered double hydroxide inspired by photosystem II. Adv. Funct. Mater. 2022, 32, 2202072.

[29]

Zhao, W. K.; Luo, C.; Lin, Y.; Wang, G. B.; Chen, H. M.; Kuang, P. Y.; Yu, J. G. Pt-Ru dimer electrocatalyst with electron redistribution for hydrogen evolution reaction. ACS Catal. 2022, 12, 5540–5548.

[30]

Zhang, H. B.; Ma, Z. J.; Duan, J. J.; Liu, H. M.; Liu, G. G.; Wang, T.; Chang, K.; Li, M.; Shi, L.; Meng, X. G. et al. Active sites implanted carbon cages in core–shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 2016, 10, 684–694.

[31]

Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3−x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042.

[32]

Chen, K.; Deng, S. F.; Lu, Y.; Gong, M. X.; Hu, Y. Z.; Zhao, T. H.; Shen, T.; Wang, D. L. Molybdenum-doped titanium dioxide supported low-Pt electrocatalyst for highly efficient and stable hydrogen evolution reaction. Chin. Chem. Lett. 2021, 32, 765–769.

[33]

Fu, H. Q.; Zhou, M.; Liu, P. F.; Liu, P. R.; Yin, H. J.; Sun, K. Z.; Yang, H. G.; Al-Mamun, M.; Hu, P. J.; Wang, H. F. et al. Hydrogen spillover-bridged Volmer/Tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential. J. Am. Chem. Soc. 2022, 144, 6028–6039.

[34]

Xu, W.; Wang, B. B.; Ni, X. M.; Liu, H. Y.; Wang, W.; Zhang, L. J.; Zhang, H.; Peng, Z.; Liu, Z. Heterogeneous synergetic effect of metal–oxide interfaces for efficient hydrogen evolution in alkaline solutions. ACS Appl. Mater. Interfaces 2021, 13, 13838–13847.

[35]

Wei, Z. W.; Wang, H. J.; Zhang, C.; Xu, K.; Lu, X. L.; Lu, T. B. Reversed charge transfer and enhanced hydrogen spillover in platinum nanoclusters anchored on titanium oxide with rich oxygen vacancies boost hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 16622–16627.

[36]

Liu, X.; Zhang, S. Y.; Liang, J. S.; Li, S. Z.; Shi, H.; Liu, J. J.; Wang, T. Y.; Han, J. T.; Li, Q. Protrusion-rich Cu@NiRu core@shell nanotubes for efficient alkaline hydrogen evolution electrocatalysis. Small 2022, 18, 2202496.

[37]

Zhu, J.; Sun, W. D.; Wang, S.; Zhao, G. F.; Liu, Y.; Lu, Y. A Ni-foam-structured MoNi4-MoOx nanocomposite catalyst for hydrogenation of dimethyl oxalate to ethanol. Chem. Commun. 2020, 56, 806–809.

[38]

Liu, W.; Xu, Q.; Cui, W. L.; Zhu, C. H.; Qi, Y. H. CO2-assisted fabrication of two-dimensional amorphous molybdenum oxide nanosheets for enhanced plasmon resonances. Angew. Chem., Int. Ed. 2017, 56, 1600–1604.

[39]

Gong, L. L.; Haur, S. C. On demand rapid patterning of colored amorphous molybdenum oxide using a focused laser beam. J. Mater. Chem. C 2017, 5, 2090–2097.

[40]

Ge, T. P.; Wei, Z. B.; Zheng, X. L.; Xu, Q. CO2-assisted synthesis of 2D amorphous MoO3−x nanosheets:From top-down to bottom-up. J. Phys. Chem. Lett. 2021, 12, 1554–1559.

[41]

Zhang, Q. X.; Ren, D.; Pan, S. J.; Wang, M. J.; Luo, J. S.; Zhao, Y.; Grätzel, M.; Zhang, X. D. Micro-electrode with fast mass transport for enhancing selectivity of carbonaceous products in electrochemical CO2 reduction. Adv. Funct. Mater. 2021, 31, 2103966.

[42]

Zhang, B.; Xiao, C. H.; Xie, S. M.; Liang, J.; Chen, X.; Tang, Y. H. Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 2016, 28, 6934–6941.

[43]

Zhang, J. Y.; Liang, J. Y.; Mei, B. B.; Lan, K.; Zu, L. H.; Zhao, T. C.; Ma, Y. Z.; Chen, Y.; Lv, Z. R.; Yang, Y. et al. Synthesis of Ni/NiO@MoO3−x composite nanoarrays for high current density hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2200001.

[44]

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

[45]

Liu, Y.; Liu, X. H.; Wang, X. S.; Ning, H.; Yang, T.; Yu, J. M.; Kumar, A.; Luo, Y. G.; Wang, H. D.; Wang, L. L. et al. Unraveling the synergy of chemical hydroxylation and the physical heterointerface upon improving the hydrogen evolution kinetics. ACS Nano 2021, 15, 15017–15026.

[46]

Chen, J. D.; Chen, C. H.; Qin, M. K.; Li, B.; Lin, B. B.; Mao, Q.; Yang, H. B.; Liu, B.; Wang, Y. Reversible hydrogen spillover in Ru-WO3−x enhances hydrogen evolution activity in neutral pH water splitting. Nat. Commun. 2022, 13, 5382.

[47]

Jin, M. T.; Zhang, X.; Shi, R.; Lian, Q.; Niu, S. Z.; Peng, O. W.; Wang, Q.; Cheng, C. Hierarchical CoP@Ni2P catalysts for pH-universal hydrogen evolution at high current density. Appl. Catal. B Environ. 2021, 296, 120350.

[48]

Wen, S. T.; Huang, J.; Li, T. T.; Chen, W.; Chen, G. L.; Zhang, Q.; Zhang, X. H.; Qian, Q. Y.; Ostrikov, K. Multiphase nanosheet-nanowire cerium oxide and nickel-cobalt phosphide for highly-efficient electrocatalytic overall water splitting. Appl. Catal. B Environ. 2022, 316, 121678.

[49]

Liu, H.; Cao, S.; Zhang, J.; Liu, S.; Chen, C.; Zhang, Y.; Wei, S.; Wang, Z.; Lu, X. Facile control of surface reconstruction with Co2+ or Co3+-rich (oxy)hydroxide surface on ZnCo phosphate for large-current-density hydrogen evolution in alkali. Mater. Today Phys. 2021, 20, 100448.

[50]

Zhou, P. Y.; Li, R. S.; Lv, J. J.; Zhao, G. C.; Zhang, X. W.; Huang, X. B.; Lu, Y. F.; Wang, G. Optimizing the electronic structure of CoNx via coupling with N-doped carbon for efficient electrochemical hydrogen evolution. J. Colloid Interface Sci. 2022, 628, 350–358.

[51]

Li, R. P.; Li, Y. Q.; Yang, P. X.; Ren, P. H.; Wang, D.; Lu, X. Y.; Xu, R. Y.; Li, Y. H.; Xue, J. M.; Zhang, J. Q. et al. Synergistic interface engineering and structural optimization of non-noble metal telluride-nitride electrocatalysts for sustainably overall seawater electrolysis. Appl. Catal. B Environ. 2022, 318, 121834.

Nano Research
Pages 12253-12262
Cite this article:
Chen X, Cao S, Lin X, et al. Construction of pH-universal hydrogen evolution freeway in MoO3-MoNi4@Cu core–shell nanowires via synergetic electronic and geometric effect. Nano Research, 2023, 16(10): 12253-12262. https://doi.org/10.1007/s12274-023-5826-4
Topics:
Part of a topical collection:

1032

Views

6

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 03 March 2023
Revised: 10 May 2023
Accepted: 10 May 2023
Published: 27 June 2023
© Tsinghua University Press 2023
Return