AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting the energy density of sulfide-based all-solid-state batteries at low temperatures by charging to high voltages up to 6 V

Lun Zhang1,§Xuedong Zhang1,§Zhaoyu Rong2Tao Wang2Zhenyu Wang3( )Zaifa Wang2,4Longchen Zhang5Qiao Huang1Lingyun Zhu6Liqiang Zhang2( )Yongfu Tang2,5( )Jianyu Huang1,2( )
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Guilin Electrical Equipment Scientific Research Institute Co., Ltd, Guilin 541004, China
GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China
Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
School of Materials Science & Engineering, Anhui University, Hefei 230601, China

§ Lun Zhang and Xuedong Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

The energy density of all-solid-state batteries (ASSBs) at low temperatures can be improved dramatically by reducing the solid electrolyte thickness and charging to high voltages up to 6 V without damaging the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials, which differs considerably from the room temperature ASSBs.

Abstract

Sulfide electrolyte-based all-solid-state batteries (ASSBs) are potential next generation energy storage technology due to the high ionic conductivity of sulfide electrolytes and potentially improved energy density and safety. However, the performance of ASSBs at/below subzero temperatures has not been explored systematically. Herein, low temperature (LT) performance of LiNi0.8Co0.1Mn0.1O2 (NCM811)|Li9.54Si1.74P1.44S11.7Cl0.3 (LiSPSCl)|Li4Ti5O12 (LTO) ASSBs was investigated. By charging the ASSB to 6 V at −40 °C, a capacity of 100.7 mAh∙g−1 at 20 mA∙g−1 was achieved, which is much higher than that charged to 4.3 V (4.6 mAh∙g−1) at −40 °C. Moreover, atomic resolution microscopy revealed that the NCM811 remained almost intact even after being charged to 6 V. In contrast, NCM811 was entirely destructed when charged to 6 V at room temperature. The sharp difference arises from the large internal charge transfer resistance at LT which requires high voltage to overcome. Nevertheless, such high voltage is not harmful to the active material but beneficial to extracting most energy out of the ASSBs at LT. We also demonstrated that thinner electrolyte is favorable for LT operation of ASSBs due to the reduced ion transfer distance. This work provides new strategies to boost the capacity and energy density of sulfide-based ASSBs at LT for dedicated LT applications.

Electronic Supplementary Material

Download File(s)
12274_2023_5827_MOESM1_ESM.pdf (3.4 MB)

References

[1]

Sun, C. W.; Liu, J.; Gong, Y. D.; Wilkinson, D. P.; Zhang, J. J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363–386.

[2]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[3]

Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

[4]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[5]

Chiang, Y. M. Building a better battery. Science 2010, 330, 1485–1486.

[6]

Zhang, N.; Deng, T.; Zhang, S. Q.; Wang, C. H.; Chen, L. X.; Wang, C. S.; Fan, X. L. Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 2022, 34, 2107899.

[7]

Gupta, A.; Manthiram, A. Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 2020, 10, 2001972.

[8]

Chen, Z.; Wang, K. L.; Pei, P. C.; Zuo, Y. Y.; Wei, M. H.; Wang, H. W.; Zhang, P. F.; Shang, N. Advances in electrolyte safety and stability of ion batteries under extreme conditions. Nano Res. 2023, 16, 2311–2324.

[9]

Zhao, Y. W.; Chen, Z.; Mo, F. N.; Wang, D. H.; Guo, Y.; Liu, Z. X.; Li, X. L.; Li, Q.; Liang, G. J.; Zhi, C. Y. Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv. Sci. 2021, 8, 2002590.

[10]

Holoubek, J.; Liu, H. D.; Wu, Z. H.; Yin, Y. J.; Xing, X.; Cai, G. R.; Yu, S. C.; Zhou, H. Y.; Pascal, T. A.; Chen, Z. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 2021, 6, 303–313.

[11]

Ai, F.; Wang, Z. Y.; Lai, N. C.; Zou, Q. L.; Liang, Z. J.; Lu, Y. C. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat. Energy 2022, 7, 417–426.

[12]

Shang, M. W.; Chen, X.; Li, B. X.; Niu, J. J. A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 MXene matrix as anode. ACS Nano 2020, 14, 3678–3686.

[13]

Deng, D. R.; Xue, F.; Bai, C. D.; Lei, J.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range. ACS Nano 2018, 12, 11120–11129.

[14]

Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108.

[15]

Chen, K. B.; Yu, Z. Q.; Deng, S.; Wu, Q.; Zou, J. X.; Zeng, X. Q. Evaluation of the low temperature performance of lithium manganese oxide/lithium titanate lithium-ion batteries for start/stop applications. J. Power Sources 2015, 278, 411–419.

[16]

Jin, D. N.; Lee, H. G.; Choi, S.; Kim, S.; Lee, Y.; Son, S.; Park, Y. C.; Lee, J. S.; Jung, K.; Shim, W. Sparked reduced graphene oxide for low-temperature sodium beta alumina batteries. Nano Lett. 2019, 19, 8811–8820.

[17]

Jin, D. N.; Choi, S.; Jang, W.; Soon, A.; Kim, J.; Moon, H.; Lee, W.; Lee, Y.; Son, S.; Park, Y. C. et al. Bismuth islands for low-temperature sodium-beta alumina batteries. ACS Appl. Mater. Interfaces 2019, 11, 2917–2924.

[18]

Zhang, Z. Y.; Hu, T. S.; Sun, Q. M.; Chen, Y.; Yang, Q. X.; Li, Y. M. The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance. J. Power Sources 2020, 453, 227908.

[19]

Chen, C. C.; Wei, Y.; Zhao, Z. B.; Zou, Y. B.; Luo, D. J. Investigation of the swelling failure of lithium-ion battery packs at low temperatures using 2D/3D X-ray computed tomography. Electrochim. Acta 2019, 305, 65–71.

[20]

Thenuwara, A. C.; Shetty, P. P.; McDowell, M. T. Distinct nanoscale interphases and morphology of lithium metal electrodes operating at low temperatures. Nano Lett. 2019, 19, 8664–8672.

[21]

Zheng, Y. W.; Qian, T.; Ji, H. Q.; Xia, X. Y.; Liu, J.; Zhu, Y. Z.; Yan, C. L. Accelerating ion dynamics under cryogenic conditions by the amorphization of crystalline cathodes. Adv. Mater. 2021, 33, 2102634.

[22]

Xu, J.; Wang, X.; Yuan, N. Y.; Ding, J. N.; Qin, S.; Razal, J. M.; Wang, X. H.; Ge, S. H.; Gogotsi, Y. Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Mater. 2019, 23, 383–389.

[23]

Rustomji, C. S.; Yang, Y. Y. C.; Kim, T. K.; Mac, J.; Kim, Y. J.; Caldwell, E.; Chung, H.; Meng, Y. S. Liquefied gas electrolytes for electrochemical energy storage devices. Science 2017, 356, eaal4263.

[24]

Lian, P. J.; Zhao, B. S.; Zhang, L. Q.; Xu, N.; Wu, M. T.; Gao, X. P. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A 2019, 7, 20540–20557.

[25]

Chen, S. J.; Xie, D. J.; Liu, G. Z.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y. R.; Xu, X. X.; Yao, X. Y. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability, and application. Energy Storage Mater. 2018, 14, 58–74.

[26]

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

[27]

Wu, J. H.; Shen, L.; Zhang, Z. H.; Liu, G. Z.; Wang, Z. Y.; Zhou, D.; Wan, H. L.; Xu, X. X.; Yao, X. Y. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 2021, 4, 101–135.

[28]

Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

[29]

Payandeh, S.; Strauss, F.; Mazilkin, A.; Kondrakov, A.; Brezesinski, T. Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Res. Energy 2022, 1, e9120016.

[30]

Wei, C.; Chen, S. Q.; Yu, C.; Wang, R.; Luo, Q. Y.; Chen, S.; Wu, Z. K.; Liu, C. X.; Cheng, S. J.; Xie, J. Achieving high-performance Li6.5Sb0.5Ge0.5S5I-based all-solid-state lithium batteries. Appl. Mater. Today 2023, 31, 101770.

[31]

Wei, C. C.; Yu, C.; Wang, R.; Peng, L. F.; Chen, S. Q.; Miao, X. F.; Cheng, S. J.; Xie, J. Sb and O dual doping of chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries. J. Power Sources 2023, 559, 232659.

[32]

Lu, P. S.; Xia, Y.; Huang, Y. L.; Li, Z. D.; Wu, Y. J.; Wang, X.; Sun, G. C.; Shi, S. C.; Sha, Z. J.; Chen, L. Q. et al. Wide-temperature, long-cycling, and high-loading pyrite all-solid-state batteries enabled by argyrodite thioarsenate superionic conductor. Adv. Funct. Mater. 2023, 33, 2211211.

[33]

Tan, D. H. S.; Chen, Y. T.; Yang, H. D.; Bao, W.; Sreenarayanan, B.; Doux, J. M.; Li, W. K.; Lu, B. Y.; Ham, S. Y.; Sayahpour, B. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373, 1494–1499.

[34]

Deng, S. X.; Jiang, M.; Chen, N.; Li, W. H.; Zheng, M.; Chen, W. F.; Li, R. Y.; Huang, H.; Wang, J. T.; Singh, C. V. et al. Regulating electronic conductivity at cathode interface for low-temperature halide-based all-solid-state batteries. Adv. Funct. Mater. 2022, 32, 2205594.

[35]

Song, H. C.; Wang, S.; Song, X. Y.; Wang, J.; Jiang, K. Z.; Huang, S. H.; Han, M.; Xu, J.; He, P.; Chen, K. J. et al. Solar-driven all-solid-state lithium-air batteries operating at extreme low temperatures. Energy Environ. Sci. 2020, 13, 1205–1211.

[36]

Li, Q. Q.; Yao, Z. P.; Lee, E.; Xu, Y. B.; Thackeray, M. M.; Wolverton, C.; Dravid, V. P.; Wu, J. S. Dynamic imaging of crystalline defects in lithium-manganese oxide electrodes during electrochemical activation to high voltage. Nat. Commun. 2019, 10, 1692.

[37]

Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2021, 11, 2003404.

[38]

Han, Y. K.; Xu, J. M.; Wang, W.; Long, F.; Qu, Q. T.; Wang, Y.; Zheng, H. H. Implanting an electrolyte additive on a single crystal Ni-rich cathode surface for improved cycleability and safety. J. Mater. Chem. A 2020, 8, 24579–24589.

[39]

Wen, Z. Y.; Zhao, Z. K.; Li, L.; Sun, Z. Y.; Chen, N.; Li, Y. J.; Wu, F.; Chen, R. J. Study on the interfacial mechanism of bisalt polyether electrolyte for lithium metal batteries. Adv. Funct. Mater. 2022, 32, 2109184.

[40]

Zhang, S. S. Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials. J. Energy Chem. 2020, 41, 135–141.

[41]

Weiss, M.; Simon, F. J.; Busche, M. R.; Nakamura, T.; Schröder, D.; Richter, F. H.; Janek, J. From liquid- to solid-state batteries: Ion transfer kinetics of heteroionic interfaces. Electrochem. Energy Rev. 2020, 3, 221–238.

[42]

Zhang, S.; Ma, J.; Dong, S. M.; Cui, G. L. Designing all-solid-state batteries by theoretical computation: A review. Electrochem. Energy Rev. 2023, 6, 4.

[43]

Zhu, Y. Z.; He, X. F.; Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693.

[44]

Schweidler, S.; de Biasi, L.; Garcia, G.; Mazilkin, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Investigation into mechanical degradation and fatigue of high-Ni NCM cathode material: A long-term cycling study of full cells. ACS Appl. Energ. Mater. 2019, 2, 7375–7384.

[45]

Van der Ven A.; Aydinol, M. K.; Ceder, G.; Kresse, G.; Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 1998, 58, 2975–2987.

[46]

Yin, S. C.; Rho, Y. H.; Swainson, I.; Nazar, L. F. X-ray/neutron diffraction and electrochemical studies of lithium De/Re-intercalation in Li1−xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1). Chem. Mater. 2006, 18, 1901–1910.

[47]

Xu, C.; Märker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S. P.; Ducati, C.; Mehdi, B. L. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 84–92.

[48]

Findlay, S. D.; Kohno, Y.; Cardamone, L. A.; Ikuhara, Y.; Shibata, N. Enhanced light element imaging in atomic resolution scanning transmission electron microscopy. Ultramicroscopy 2014, 136, 31–41.

[49]

Zhang, C. C.; Feng, Y. Z.; Han, Z.; Gao, S.; Wang, M. Y.; Wang, P. Electrochemical and structural analysis in all-solid-state lithium batteries by analytical electron microscopy: Progress and perspectives. Adv. Mater. 2020, 32, 1903747.

[50]

Hu, X. B.; Fisher, C. A. J.; Kobayashi, S.; Ikuhara, Y. H.; Fujiwara, Y.; Hoshikawa, K.; Moriwake, H.; Kohama, K.; Iba, H.; Ikuhara, Y. Atomic scale imaging of structural changes in solid electrolyte lanthanum lithium niobate upon annealing. Acta Mater. 2017, 127, 211–219.

[51]

Hu, X. B.; Kobayashi, S.; Ikuhara, Y. H.; Fisher, C. A. J.; Fujiwara, Y.; Hoshikawa, K.; Moriwake, H.; Kohama, K.; Iba, H.; Ikuhara, Y. Atomic scale imaging of structural variations in La(1−x)/3LixNbO3 (0 ≤ x ≤ 0.13) solid electrolytes. Acta Mater. 2017, 123, 167–176.

[52]

Liu, T. C.; Liu, J. J.; Li, L. X.; Yu, L.; Diao, J. C.; Zhou, T.; Li, S. N.; Dai, A.; Zhao, W. G.; Xu, S. Y. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 2022, 606, 305–312.

[53]

Shi, C. G.; Peng, X. X.; Dai, P.; Xiao, P. H.; Zheng, W. C.; Li, H. Y.; Li, H.; Indris, S.; Mangold, S.; Hong, Y. H. et al. Investigation and suppression of oxygen release by LiNi0.8Co0.1Mn0.1O2 cathode under overcharge conditions. Adv. Energy Mater. 2022, 12, 2200569.

[54]

Sun, J. M.; Sheng, C. C.; Cao, X.; Wang, P. F.; He, P.; Yang, H. J.; Chang, Z.; Yue, X. Y.; Zhou, H. S. Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Adv. Funct. Mater. 2022, 32, 2110295.

[55]

Li, H. Y.; Zhang, N.; Li, J.; Dahn, J. R. Updating the structure and electrochemistry of LixNiO2 for 0 ≤ x ≤ 1. J. Electrochem. Soc. 2018, 165, A2985–A2993.

[56]

Wang, J. C.; Zhang, Z. Y.; Han, J. F.; Wang, X. F.; Chen, L. Q.; Li, H.; Wu, F. Interfacial and cycle stability of sulfide all-solid-state batteries with Ni-rich layered oxide cathodes. Nano Energy 2022, 100, 107528.

[57]

Wang, Y.; Wang, Z. X.; Wu, D. X.; Niu, Q. H.; Lu, P. S.; Ma, T. H.; Su, Y. B.; Chen, L. Q.; Li, H.; Wu, F. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience 2022, 2, 537–545.

[58]

Lee, M. J.; Lee, K.; Lim, J.; Li, M. C.; Noda, S.; Kwon, S. J.; DeMattia, B.; Lee, B.; Lee, S. W. Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 2021, 31, 2009397.

[59]

Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.

[60]

Jiang, Z.; Liang, T. B.; Liu, Y.; Zhang, S. Z.; Li, Z. X.; Wang, D. H.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution. ACS Appl. Mater. Interfaces 2020, 12, 54662–54670.

[61]

Jiang, Z.; Li, Z. X.; Wang, X. L.; Gu, C. D.; Xia, X. H.; Tu, J. P. Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface. ACS Appl. Mater. Interfaces 2021, 13, 30739–30745.

Nano Research
Pages 10966-10975
Cite this article:
Zhang L, Zhang X, Rong Z, et al. Boosting the energy density of sulfide-based all-solid-state batteries at low temperatures by charging to high voltages up to 6 V. Nano Research, 2023, 16(8): 10966-10975. https://doi.org/10.1007/s12274-023-5827-3
Topics:

1073

Views

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 15 March 2023
Revised: 09 May 2023
Accepted: 10 May 2023
Published: 13 June 2023
© Tsinghua University Press 2023
Return