Graphical Abstract

Through interface engineering and content control strategy, a PdBi bimetallic interface structure was constructed for the first time to selectively convert CO2 to formate with a remarkably high Faraday efficiency (FEformate) of 94% and a partial current density (jformate) of 34 mA·cm−2 at −0.8 V vs. reversible hydrogen electrode (RHE) in an H-cell. Moreover, the PdBi interface electrocatalyst even exhibited a high current density of 180 mA·cm−2 with formate selectivity up to 92% in a flow cell and could steadily operate for at least 20 h. Electrochemical in-situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) confirmed that the PdBi interface could greatly weaken the adsorption of *CO intermediates due to electronic and geometric effects. Density functional theory (DFT) calculations also established that the PdBi interface regulated the CO2-to-formate pathway by reducing the energy barrier toward HCOOH and largely weakening the adsorption of *CO intermediates on the catalyst surface. This study reveals that the unique PdBi bimetallic interface can provide a novel platform to study the reaction mechanism through combining in-situ ATR-SEIRAS and DFT calculations.
Hori, Y.; Murata, A.; Kikuchi, K.; Suzuki, S. Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate. J. Chem. Soc., Chem. Commun. 1987, 728–729.
Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 2002, 106, 15–17.
Wang, Y. O.; Godin, R.; Durrant, J. R.; Tang, J. W. Efficient hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions. Angew. Chem., Int. Ed. 2021, 60, 20811–20816.
Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.
Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.
Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.
Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.
Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy 2019, 4, 732–745.
Tao, Z. X.; Wu, Z. S.; Wu, Y. S.; Wang, H. L. Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 2020, 10, 9271–9275.
Zhang, W. Y.; Qin, Q.; Dai, L.; Qin, R. X.; Zhao, X. J.; Chen, X. M.; Ou, D. H.; Chen, J.; Chuong, T. T.; Wu, B. H. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd–O–Sn interfaces. Angew. Chem., Int. Ed. 2018, 57, 9475–9479.
Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.
Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.
Jia, L.; Sun, M.; Xu, J.; Zhao, X.; Zhou, R.; Pan, B.; Wang, L.; Han, N.; Huang, B.; Li, Y. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 21741–21745.
Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177.
Lv, H.; Lv, F.; Qin, H. Y.; Min, X. W.; Sun, L. Z.; Han, N.; Xu, D. D.; Li, Y. G.; Liu, B. Single-crystalline mesoporous palladium and palladium-copper nanocubes for highly efficient electrochemical CO2 reduction. CCS Chem. 2022, 4, 1376–1385.
Zhou, R.; Fan, X.; Ke, X. X.; Xu, J.; Zhao, X.; Jia, L.; Pan, B. B.; Han, N.; Li, L. X.; Liu, X. J. et al. Two-dimensional palladium-copper alloy nanodendrites for highly stable and selective electrochemical formate production. Nano Lett. 2021, 21, 4092–4098.
Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth–tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.
An, X. W.; Li, S. S.; Hao, X. Q.; Xie, Z. K.; Du, X.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate. Renew. Sust. Energy Rev. 2021, 143, 110952.
Huang, W. C.; Zhu, J.; Wang, M. K.; Hu, L. P.; Tang, Y. F.; Shu, Y. Q.; Xie, Z. J.; Zhang, H. Emerging mono-elemental bismuth nanostructures: Controlled synthesis and their versatile applications. Adv. Funct. Mater. 2020, 31, 2007584.
Lu, X.; Wu, Y. S.; Yuan, X. L.; Wang, H. L. An integrated CO2 electrolyzer and formate fuel cell enabled by a reversibly restructuring Pb-Pd bimetallic catalyst. Angew. Chem., Int. Ed. 2019, 58, 4031–4035.
Pan, B. B.; Yuan, G. T.; Zhao, X.; Han, N.; Huang, Y.; Feng, K.; Cheng, C.; Zhong, J.; Zhang, L.; Wang, Y. H. et al. Highly dispersed indium oxide nanoparticles supported on carbon nanorods enabling efficient electrochemical CO2 reduction. Small Sci. 2021, 1, 2100029.
Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.
Zhong, H. X.; Qiu, Y. L.; Li, X. F.; Pan, L. W.; Zhang, H. M. Ordered cone-structured tin directly grown on carbon paper as efficient electrocatalyst for CO2 electrochemical reduction to formate. J. Energy Chem. 2021, 55, 236–243.
Jiang, T. W.; Qin, X. X.; Ye, K.; Zhang, W. Y.; Li, H.; Liu, W. H.; Huo, S. J.; Zhang, X. G.; Jiang, K.; Cai, W. B. An interactive study of catalyst and mechanism for electrochemical CO2 reduction to formate on Pd surfaces. Appl. Catal. B: Environ. 2023, 334, 122815.
Zhang, G. R.; Qin, X. X.; Deng, C. W.; Cai, W. B.; Jiang, K. Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalysts. Adv. Sens. Energy Mater. 2022, 1, 100007.
Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.
Li, W. J.; Zhang, Z. R.; Liu, W. H.; Gan, Q.; Liu, M. M.; Huo, S. J.; Chen, W. ZnSn nanocatalyst: Ultra-high formate selectivity from CO2 electrochemical reduction and the structure evolution effect. J. Colloid Interface Sci. 2022, 608, 2791–2800.
Zhao, C. C.; Wang, J. L. Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chem. Eng. J. 2016, 293, 161–170.
Zhou, Y.; Zhou, R.; Zhu, X. R.; Han, N.; Song, B.; Liu, T. C.; Hu, G. Z.; Li, Y. F.; Lu, J.; Li, Y. G. Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv. Mater. 2020, 32, 2000992.
Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.
Xie, L. F.; Liu, X.; Huang, F. Y.; Liang, J. S.; Liu, J. Y.; Wang, T. Y.; Yang, L. M.; Cao, R. G.; Li, Q. Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets. Chin. J. Catal. 2022, 43, 1680–1686.
Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.
Bai, X. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Song, Y. F.; Ge, R. P.; Wei, W.; Sun, Y. H. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew. Chem., Int. Ed. 2017, 56, 12219–12223.
Bok, J.; Lee, S. Y.; Lee, B. H.; Kim, C.; Nguyen, D. L. T.; Kim, J. W.; Jung, E.; Lee, C. W.; Jung, Y.; Lee, H. S. et al. Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate. J. Am. Chem. Soc. 2021, 143, 5386–5395.
Li, J. H.; Liu, M. Y.; Li, Y.; Yuan, L.; Zhang, P.; Cai, Z.; Chen, H.; Zou, J. L. ZIF-8@ZIF-67-derived ZnCo2O4@nitrogen-doped carbon/carbon nanotubes wrapped by a carbon layer: A stable oxygen reduction catalyst with a competitive strength in acid media. Mater. Today Energy 2021, 19, 100574.
Gunji, T.; Ochiai, H.; Ohira, T.; Liu, Y. B.; Nakajima, Y.; Matsumoto, F. Preparation of various Pd-based alloys for electrocatalytic CO2 reduction reaction-selectivity depending on secondary elements. Chem. Mater. 2020, 32, 6855–6863.
Wang, Y. X.; Cao, L.; Libretto, N. J.; Li, X.; Li, C. Y.; Wan, Y. D.; He, C.; Lee, J.; Gregg, J.; Zong, H. et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16635–16642.
Xie, H.; Wan, Y. Y.; Wang, X. M.; Liang, J. S.; Lu, G.; Wang, T. Y.; Chai, G. L.; Adli, N. M.; Priest, C.; Huang, Y. H. et al. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Appl. Catal. B: Environ. 2021, 289, 119783.
Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc. 2018, 140, 8902–8909.
Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.; Zhang, J. L.; Han, B. X. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem., Int. Ed. 2018, 57, 14149–14153.
Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.
Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.
Shen, X. Y.; Liu, X. K.; Wang, S. C.; Chen, T.; Zhang, W.; Cao, L. L.; Ding, T.; Lin, Y.; Liu, D.; Wang, L. et al. Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction. Nano Lett. 2021, 21, 686–692.
Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.
Li, Z.; Feng, Y. J.; Li, Y. F.; Chen, X. P.; Li, N.; He, W. H.; Liu, J. Fabrication of Bi/Sn bimetallic electrode for high-performance electrochemical reduction of carbon dioxide to formate. Chem. Eng. J. 2022, 428, 130901.
Li, H.; Jiang, T. W.; Qin, X. X.; Chen, J.; Ma, X. Y.; Jiang, K.; Zhang, X. G.; Cai, W. B. Selective reduction of CO2 to CO on an Sb-modified Cu electrode: Spontaneous fabrication and physical insight. ACS Catal. 2021, 11, 6846–6856.
Jiang, T. W.; Zhou, Y. W.; Ma, X. Y.; Qin, X. X.; Li, H.; Ding, C.; Jiang, B.; Jiang, K.; Cai, W. B. Spectrometric study of electrochemical CO2 reduction on Pd and Pd-B electrodes. ACS Catal. 2021, 11, 840–848.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.
Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.
Fu, Y. Y.; Wang, T. T.; Zheng, W. Z.; Lei, C. J.; Yang, B.; Chen, J.; Li, Z. J.; Lei, L. C.; Yuan, C.; Hou, Y. Nanoconfined tin oxide within N-doped nanocarbon supported on electrochemically exfoliated graphene for efficient electroreduction of CO2 to formate and C1 products. ACS Appl. Mater. Interfaces 2020, 12, 16178–16185.
Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.
Ma, M.; Trześniewski, B. J.; Xie, J.; Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9748–9752.
Xu, X. L.; Zhang, X. M.; Xia, Z. X.; Sun, R. L.; Wang, J. H.; Jiang, Q. K.; Yu, S. S.; Wang, S. L.; Sun, G. Q. Fe-N-C with intensified exposure of active sites for highly efficient and stable direct methanol fuel cells. ACS Appl. Mater. Interfaces 2021, 13, 16279–16288.
Herron, J. A.; Tonelli, S.; Mavrikakis, M. Atomic and molecular adsorption on Pd (111). Surf. Sci. 2012, 606, 1670–1679.
Zhu, S. Q.; Wang, Q.; Qin, X. P.; Gu, M.; Tao, R.; Lee, B. P.; Zhang, L. L.; Yao, Y. Z.; Li, T. H.; Shao, M. H. Tuning structural and compositional effects in Pd-Au nanowires for highly selective and active CO2 electrochemical reduction reaction. Adv. Energy Mater. 2018, 8, 1802238.
Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.