AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A new FTO/TiO2/PbO2 electrode for eco-friendly electrochemical determination of chemical oxygen demand

Lei Wang1,2,3Yuehan Zhang3,5Xiaoxuan Sun3,4Yunhui Li1,2( )Junfeng Zhai3( )Shaojun Dong3,4( )
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
College of Chemistry, Jilin University, Changchun 130012, China
Show Author Information

Graphical Abstract

A new FTO/TiO2/PbO2 (FTO = fluorine-doped tin oxide) electrode is proposed for chemical oxygen demand (COD) detection with low detection limit.

Abstract

Eco-friendly chemical oxygen demand (COD) sensors are highly desired with respect to the importance of COD determination in environmental protection. In this work, a new FTO/TiO2/PbO2 (FTO = fluorine-doped tin oxide) electrode was fabricated with a two-step method and used as an eco-friendly electrochemical COD sensor. The interlayer TiO2 was employed to strengthen the adhesion of PbO2 on the FTO substrates by providing a large TiO2/PbO2 interface area. The effects of the factors including applied potential, supporting electrolyte concentration and stirring speed on the sensing performance were investigated. Under the optimized conditions, linear responses to the COD of water with different COD sources were achieved, and a linear range from 5 to 120 mg/L was obtained in the case of sucrose as the COD source. The relative standard deviations (RSD) were determined to be less than 9% for the glucose solutions with the COD of 7.5, 12.5 and 17.5 mg/L. For real sample analysis, the obtained results were comparable with those measured with the conventional dichromate method, with a relative error less than 11%.

Electronic Supplementary Material

Video
12274_2023_5830_MOESM2_ESM.mp4
12274_2023_5830_MOESM3_ESM.mp4
Download File(s)
12274_2023_5830_MOESM1_ESM.pdf (501.7 KB)

References

[1]

Geerdink, R. B.; van den Hurk, R. S.; Epema, O. J. Chemical oxygen demand: Historical perspectives and future challenges. Anal. Chim. Acta 2017, 961, 1–11.

[2]

Alves, N. A.; Olean-Oliveira, A.; Cardoso, C. X.; Teixeira, M. F. S. Photochemiresistor sensor development based on a bismuth vanadate type semiconductor for determination of chemical oxygen demand. ACS Appl. Mater. Interfaces 2020, 12, 18723–18729.

[3]

Kondo, T.; Tamura, Y.; Hoshino, M.; Watanabe, T.; Aikawa, T.; Yuasa, M.; Einaga, Y. Direct determination of chemical oxygen demand by anodic decomposition of organic compounds at a diamond electrode. Anal. Chem. 2014, 86, 8066–8072.

[4]

Kim, Y. C.; Sasaki, S.; Yano, K.; Ikebukuro, K.; Hashimoto, K.; Karube, I. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen. Anal. Chem. 2002, 74, 3858–3864.

[5]

Yu, H. B.; Wang, H.; Quan, X.; Chen, S.; Zhang, Y. B. Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor. Electrochem. Commun. 2007, 9, 2280–2285.

[6]

Zhang, S. Q.; Li, L. H.; Zhao, H. J.; Li, G. Y. A portable miniature UV-LED-based photoelectrochemical system for determination of chemical oxygen demand in wastewater. Sensor. Actuat. B Chem. 2009, 141, 634–640.

[7]

Duan, W. C.; del Campo, F. J.; Gich, M.; Fernández-Sánchez, C. In-field one-step measurement of dissolved chemical oxygen demand with an integrated screen-printed electrochemical sensor. Sensor. Actuat. B Chem. 2022, 369, 132304.

[8]

Liao, J. J.; Chang, F.; Han, X. H.; Ge, C. J.; Lin, S. W. Wireless water quality monitoring and spatial mapping with disposable whole-copper electrochemical sensors and a smartphone. Sensor. Actuat. B Chem. 2020, 306, 127557.

[9]

Zhang, Z. Y.; Chang, X.; Chen, A. C. Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO2 electrodes. Sensor. Actuat. B Chem. 2016, 223, 664–670.

[10]

Si, H. W.; Pan, N. Q.; Zhang, X. D.; Liao, J. J.; Rumyantseva, M. N.; Gaskov, A. M.; Lin, S. W. A real-time on-line photoelectrochemical sensor toward chemical oxygen demand determination based on field-effect transistor using an extended gate with 3D TiO2 nanotube arrays. Sensor. Actuat. B Chem. 2019, 289, 106–113.

[11]

Yu, H. B.; Ma, C. J.; Quan, X.; Chen, S.; Zhao, H. M. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode. Environ. Sci. Technol. 2009, 43, 1935–1939.

[12]

Elfeky, E. M. S.; Shehata, M. R.; Elbashar, Y. H.; Barakat, M. H.; El Rouby, W. M. A. Developing the sensing features of copper electrodes as an environmental friendly detection tool for chemical oxygen demand. RSC Adv. 2022, 12, 4199–4208.

[13]

Dai, Z.; Hao, N.; Xiong, M.; Han, X.; Zuo, Y. L.; Wang, K. Portable photoelectrochromic visualization sensor for detection of chemical oxygen demand. Anal. Chem. 2020, 92, 13604–13609.

[14]

Ai, S. Y.; Gao, M. N.; Yang, Y.; Li, J. Q.; Jin, L. T. Electrocatalytic sensor for the determination of chemical oxygen demand using a lead dioxide modified electrode. Electroanalysis 2004, 16, 404–409.

[15]

Ma, C. J.; Tan, F.; Zhao, H. M.; Chen, S.; Quan, X. Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode. Sensor. Actuat. B Chem. 2011, 155, 114–119.

[16]

Wang, X.; Wu, D. D.; Yuan, D.; Wu, X. A nano-lead dioxide-composite electrochemical sensor for the determination of chemical oxygen demand. J. Environ. Chem. Eng. 2022, 10, 107464.

[17]

Carr, J. P.; Hampson, N. A. Lead dioxide electrode. Chem. Rev. 1972, 72, 679–703.

[18]

Velichenko, A. B.; Girenko, D. V.; Kovalyov, S. V.; Gnatenko, A. N.; Amadelli, R.; Danilov, F. I. Lead dioxide electrodeposition and its application: Influence of fluoride and iron ions. J. Electroanal. Chem. 1998, 454, 203–208.

[19]

Ghasemi, S.; Mousavi, M. F.; Shamsipur, M. Electrochemical deposition of lead dioxide in the presence of polyvinylpyrrolidone: A morphological study. Electrochim. Acta 2007, 53, 459–467.

[20]

Fazlinezhad, S.; Jafarzadeh, K.; Shooshtari Gugtapeh, H.; Mirali, S. M. Characterization and electrochemical properties of stable Ni2+ and F co-doped PbO2 coating on titanium substrate. J. Electroanal. Chem. 2022, 909, 116145.

[21]

Xu, Z. S.; Liu, H.; Niu, J. F.; Zhou, Y. J.; Wang, C.; Wang, Y. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater. J. Hazard. Mater. 2017, 327, 144–152.

[22]

Song, Y. H.; Wei, G.; Xiong, R. C. Structure and properties of PbO2-CeO2 anodes on stainless steel. Electrochim. Acta 2007, 52, 7022–7027.

[23]

Rahmani, A.; Seid-mohammadi, A.; Leili, M.; Shabanloo, A.; Ansari, A.; Alizadeh, S.; Nematollahi, D. Electrocatalytic degradation of diuron herbicide using three-dimensional carbon felt/β-PbO2 anode as a highly porous electrode: Influencing factors and degradation mechanisms. Chemosphere 2021, 276, 130141.

[24]

Poll, C. G.; Payne, D. J. Electrochemical synthesis of PbO2, Pb3O4 and PbO films on a transparent conducting substrate. Electrochim. Acta 2015, 156, 283–288.

[25]

Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.

[26]

Wang, F. W.; Li, S. D.; Xu, M.; Wang, Y. Y.; Fang, W. Y.; Yan, X. Y. Effect of electrochemical modification method on structures and properties of praseodymium doped lead dioxide anodes. J. Electrochem. Soc. 2013, 160, D53–D59.

[27]

Pottier, A.; Chanéac, C.; Tronc, E.; Mazerolles, L.; Jolivet, J. P. Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J. Mater. Chem. 2001, 11, 1116–1121.

[28]

Li, X. H.; Pletcher, D.; Walsh, F. C. Electrodeposited lead dioxide coatings. Chem. Soc. Rev. 2011, 40, 3879–3894.

[29]

Herron, M. E.; Pletcher, D.; Walsh, F. C. A combined electrochemical and in-situ X-ray diffraction study of the cycling of well-defined lead dioxide layers on platinum. J. Electroanal. Chem. 1992, 332, 183–197.

[30]

Ruetschi, P.; Angstadt, R. T. Anodic oxidation of lead at constant potential. J. Electrochem. Soc. 1964, 111, 1323–1330.

[31]

Binh, P. T.; Van Anh, N. T.; Thuy, M. T. T.; Xuan, M. T.; Duyen, N. T. Electrochemical study on the structure of PbO2 in mixed gel electrolytes during cycling by cyclic voltammetry. Vietnam J. Chem. 2021, 59, 767–774.

[32]

Devilliers, D.; Dinh Thi, M. T.; Mahé, E.; Dauriac, V.; Lequeux, N. Electroanalytical investigations on electrodeposited lead dioxide. J. Electroanal. Chem. 2004, 573, 227–239.

[33]

Hu, G.; Xu, R. D.; He, S. W.; Chen, B. M.; Yang, H. T.; Yu, B. H.; Liu, Q. Electrosynthesis of Al/Pb/α-PbO2 composite inert anode materials. Trans. Nonferrous Met. Soc. China 2015, 25, 2095–2102.

[34]

Liu, Z.; Luo, X. F.; Ji, D. D. Effect of phase composition of PbO2 on cycle stability of soluble lead flow batteries. J. Energy Storage 2021, 38, 102524.

[35]

Inguanta, R.; Vergottini, F.; Ferrara, G.; Piazza, S.; Sunseri, C. Effect of temperature on the growth of α-PbO2 nanostructures. Electrochim. Acta 2010, 55, 8556–8562.

[36]

Mo, H. L.; Tang, Y.; Wang, N.; Zhang, M.; Cheng, H. N.; Chen, Y. M.; Wan, P. Y.; Sun, Y. Z.; Liu, S. Y.; Wang, L. Performance improvement in chemical oxygen demand determination using carbon fiber felt/CeO2-β-PbO2 electrode deposited by cyclic voltammetry method. J. Solid. State Electr. 2016, 20, 2179–2189.

[37]

Mo, H. L.; Tang, Y.; Wang, X. Z.; Liu, J.; Kong, D. D.; Chen, Y. M.; Wan, P. Y.; Cheng, H. N.; Sun, T. Q.; Zhang, L. Y. et al. Development of a three-dimensional structured carbon fiber felt/β-PbO2 electrode and its application in chemical oxygen demand determination. Electrochim. Acta 2015, 176, 1100–1107.

[38]

Dai, Q. Z.; Xia, Y. J.; Sun, C.; Weng, M. L.; Chen, J.; Wang, J. D.; Chen, J. M. Electrochemical degradation of levodopa with modified PbO2 electrode: Parameter optimization and degradation mechanism. Chem. Eng. J. 2014, 245, 359–366.

[39]

Duan, P. Z.; Hu, X.; Ji, Z. Y.; Yang, X. M.; Sun, Z. R. Enhanced oxidation potential of Ti/SnO2-Cu electrode for electrochemical degradation of low-concentration ceftazidime in aqueous solution: Performance and degradation pathway. Chemosphere 2018, 212, 594–603.

[40]

Silva, C. R.; Conceicao, C. D. C.; Bonifácio, V. G.; Fatibello Filho, O.; Teixeira, M. F. S. Determination of the chemical oxygen demand (COD) using a copper electrode: A clean alternative method. J. Solid State Electrochem. 2009, 13, 665–669.

[41]

Yang, J. Q.; Chen, J. W.; Zhou, Y. K.; Wu, K. B. A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sensor. Actuat. B Chem. 2011, 153, 78–82.

[42]

Li, J. Q.; Zheng, L.; Li, L. P.; Shi, G. Y.; Xian, Y. Z.; Jin, L. T. Ti/TiO2 electrode preparation using laser anneal and its application to determination of chemical oxygen demand. Electroanalysis 2006, 18, 1014–1018.

Nano Research
Pages 11042-11047
Cite this article:
Wang L, Zhang Y, Sun X, et al. A new FTO/TiO2/PbO2 electrode for eco-friendly electrochemical determination of chemical oxygen demand. Nano Research, 2023, 16(8): 11042-11047. https://doi.org/10.1007/s12274-023-5830-8
Topics:

704

Views

1

Crossref

3

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 March 2023
Revised: 11 May 2023
Accepted: 11 May 2023
Published: 23 June 2023
© Tsinghua University Press 2023
Return