AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Patternable and transferable silver nanowire conductors via plasma-enhanced cryo-transferring process towards highly stretchable and transparent capacitive touch sensor array

Yifan GuZhiguang QiuSimu ZhuHao LuLisha PengGaofan ZhangZiyi WuXuchun GuiZong QinBo-ru Yang( )
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
Show Author Information

Graphical Abstract

This work developed a plasma-enhanced cryo-transferring process for fabricating silver nanowire (AgNW)-embedded stretchable transparent electrodes (STE) with arbitrary patterns. Owing to the plasma-induced sintering, the intact transferring of AgNW network was achieved, which promised the as-prepared patternable STEs with remarkable mechanical performance and great potential for further applications in stretchable electronics.

Abstract

Stretchable transparent electrode (STE) plays a key role in numerous emerging applications as an indispensable component for future stretchable devices. The embedded STE, as a promising candidate, possesses balanced performances and facile preparation procedures. However, it still suffers from the defects of conductive materials caused by the transferring, which results in the irreversible failure of devices. In this work, a patternable silver nanowire (AgNW) STE was fabricated by a plasma-enhanced cryo-transferring (PEC-transferring) process. Owing to the plasma-induced sintering, the AgNW network obtained remarkable improvement in robustness, which ensured the intact network after transferring and thus led to superior tensile electrical properties of the STE. Furthermore, serpentine patterns were utilized to optimize the tensile electrical properties of the STE, which achieved a figure of merit of 292.8 and 150% resistance changing under 50% strain. As a practical application, a 4 × 3 array of the mutual-capacitive type stretchable touch sensors was demonstrated for future touch sensors in stretchable devices. The PEC-transferring process opened a new avenue for patternable embedded STEs and exhibited its high potential in wearable electronics and the Internet of Thing devices.

Electronic Supplementary Material

Download File(s)
12274_2023_5832_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Sunwoo, S. H.; Ha, K. H.; Lee, S.; Lu, N. S.; Kim, D. H. Wearable and implantable soft bioelectronics: Device designs and material strategies. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 359–391.

[2]

Park, C.; Kim, M. S.; Kim, H. H.; Sunwoo, S. H.; Jung, D. J.; Choi, M. K.; Kim, D. H. Stretchable conductive nanocomposites and their applications in wearable devices. Appl. Phys. Rev. 2022, 9, 021312.

[3]

Wang, C. Y.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109–2146.

[4]

Wang, W.; Yang, S.; Ding, K.; Jiao, L.; Yan, J.; Zhao, W.; Ma, Y. Y.; Wang, T. Y.; Cheng, B. W.; Ni, Y. H. Biomaterials- and biostructures inspired high-performance flexible stretchable strain sensors: A review. Chem. Eng. J. 2021, 425, 129949.

[5]

Yang, Y.; Deng, Z. D. Stretchable sensors for environmental monitoring. Appl. Phys. Rev. 2019, 6, 011309.

[6]

Vallem, V.; Sargolzaeiaval, Y.; Ozturk, M.; Lai, Y. C.; Dickey, M. D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 2021, 33, e2004832.

[7]

Kim, N.; Kim, J.; Seo, J.; Hong, C.; Lee, J. Stretchable inorganic LED displays with double-layer modular design for high fill factor. ACS Appl. Mater. Interfaces 2022, 14, 4344–4351.

[8]

Lee, Y.; Kim, D. S.; Jin, S. W.; Lee, H.; Jeong, Y. R.; You, I.; Zi, G.; Ha, J. S. Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chem. Eng. J. 2022, 427, 130858.

[9]

Yang, B.; Zhao, Y. Q.; Ali, M. U.; Ji, J. P.; Yan, H.; Zhao, C. B.; Cai, Y. L.; Zhang, C. H.; Meng, H. Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays. Adv. Mater. 2022, 34, e2201342.

[10]

Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. N. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914.

[11]

Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

[12]

Xin, Y. Y.; Zhou, J.; Lubineau, G. A highly stretchable strain-insensitive temperature sensor exploits the Seebeck effect in nanoparticle-based printed circuits. J. Mater. Chem. A 2019, 7, 24493–24501.

[13]

Yao, B.; Xu, X. W.; Zhang, Q. F.; Yu, H.; Li, H.; Ren, L. L.; Perini, S.; Lanagan, M.; Wang, Q.; Wang, H. Highly stretchable and mechanically tunable antennas based on three-dimensional liquid metal network. Mater. Lett. 2020, 270, 127727.

[14]

Zhang, B. W.; Li, W. L.; Yang, Y.; Chen, C. T.; Li, C. F.; Suganuma, K. Fully embedded CuNWs/PDMS conductor with high oxidation resistance and high conductivity for stretchable electronics. J. Mater. Sci. 2019, 54, 6381–6392.

[15]

Dong, K.; Wu, Z. Y.; Deng, J. N.; Wang, A. C.; Zou, H. Y.; Chen, C. Y.; Hu, D. M.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 2018, 30, e1804944.

[16]

Yang, H. J.; Lee, J. W.; Seo, S. H.; Jeong, B.; Lee, B.; Do, W. J.; Kim, J. H.; Cho, J. Y.; Jo, A.; Jeong, H. J. et al. Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy 2021, 86, 106083.

[17]

Guan, X. Y.; Xu, B. G.; Huang, J. X.; Jing, T. T.; Gao, Y. Y. Fiber-shaped stretchable triboelectric nanogenerator with a novel synergistic structure of opposite Poisson’s ratios. Chem. Eng. J. 2022, 427, 131698.

[18]

Kwan, Y. C. G.; Le, Q. L.; Huan, C. H. A. Time to failure modeling of silver nanowire transparent conducting electrodes and effects of a reduced graphene oxide over layer. Sol. Energy Mater. Sol. Cells 2016, 144, 102–108.

[19]

Tang, M.; Zheng, P.; Wang, K. Q.; Qin, Y. J.; Jiang, Y. Z.; Cheng, Y. R.; Li, Z.; Wu, L. M. Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. J. Mater. Chem. A 2019, 7, 27278–27288.

[20]

Xu, J. Z.; Qiu, Z. G.; Yang, M. Y.; Chen, J. W.; Luo, Q. Y.; Wu, Z. Y.; Liu, G. S.; Wu, J.; Qin, Z.; Yang, B. R. Stretchable transparent electrode via wettability self-assembly in mechanically induced self-cracking. ACS Appl. Mater. Interfaces 2021, 13, 52880–52891.

[21]

Kim, K. S.; Choi, S. B.; Kim, D. U.; Lee, C. R.; Kim, J. W. Photo-induced healing of stretchable transparent electrodes based on thermoplastic polyurethane with embedded metallic nanowires. J. Mater. Chem. A 2018, 6, 12420–12429.

[22]

Liu, G. S.; Wang, T.; Wang, Y. X.; Zheng, H. J.; Chen, Y. S.; Zeng, Z. J.; Chen, L.; Chen, Y. F.; Yang, B. R.; Luo, Y. H. et al. One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Res. 2022, 15, 2582–2591.

[23]

Zhou, H. Y.; Han, S. J.; Harit, A. K.; Kim, D. H.; Kim, D. Y.; Choi, Y. S.; Kwon, H.; Kim, K. N.; Go, G. T.; Yun, H. J. et al. Graphene-based intrinsically stretchable 2D-contact electrodes for highly efficient organic light-emitting diodes. Adv. Mater. 2022, 34, e2203040.

[24]

Zhao, X. F.; Wen, X. H.; Zhong, S. L.; Liu, M. Y.; Liu, Y. H.; Yu, X. B.; Ma, R. G.; Zhang, D. W.; Wang, J. C.; Lu, H. L. Hollow MXene sphere-based flexible e-skin for multiplex tactile detection. ACS Appl. Mater. Interfaces 2021, 13, 45924–45934.

[25]

Niu, Z. Q.; Cui, F.; Yu, Y.; Becknell, N.; Sun, Y. C.; Khanarian, G.; Kim, D.; Dou, L. T.; Dehestani, A.; Schierle-Arndt, K. et al. Ultrathin epitaxial Cu@Au core–shell nanowires for stable transparent conductors. J. Am. Chem. Soc. 2017, 139, 7348–7354.

[26]

Niu, Z. Q.; Cui, F.; Kuttner, E.; Xie, C. L.; Chen, H.; Sun, Y. C.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Synthesis of silver nanowires with reduced diameters using benzoin-derived radicals to make transparent conductors with high transparency and low haze. Nano Lett. 2018, 18, 5329–5334.

[27]

Niu, Z. Q.; Chen, S. P.; Yu, Y.; Lei, T.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Morphology-controlled transformation of Cu@Au core–shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Res. 2020, 13, 2564–2569.

[28]

Fei, F.; Kotak, P.; He, L.; Li, X. F.; Vanderhoef, C.; Lamuta, C.; Song, X. Cephalopod-inspired stretchable self-morphing skin via embedded printing and twisted spiral artificial muscles. Adv. Funct. Mater. 2021, 31, 2105528.

[29]

Helseth, L. E. Interdigitated electrodes based on liquid metal encapsulated in elastomer as capacitive sensors and triboelectric nanogenerators. Nano Energy 2018, 50, 266–272.

[30]

Cui, N.; Tang, Q. X.; Ren, H.; Zhao, X. L.; Tong, Y. H.; Liu, Y. C. A photolithographic stretchable transparent electrode for an all-solution-processed fully transparent conformal organic transistor array. J. Mater. Chem. C 2019, 7, 5385–5393.

[31]

Fan, X.; Wang, N. X.; Yan, F.; Wang, J. Z.; Song, W.; Ge, Z. Y. A transfer-printed, stretchable, and reliable strain sensor using PEDOT: PSS/Ag NW hybrid films embedded into elastomers. Adv. Mater. Technol. 2018, 3, 1800030.

[32]

Zhu, X. Y.; Liu, M. Y.; Qi, X. M.; Li, H. K.; Zhang, Y. F.; Li, Z. H.; Peng, Z. L.; Yang, J. J.; Qian, L.; Xu, Q. et al. Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing. Adv. Mater. 2021, 33, e2007772.

[33]

Zhang, C. P.; Khan, A.; Cai, J. X.; Liang, C. W.; Liu, Y. J.; Deng, J. H.; Huang, S. Y.; Li, G. X.; Li, W. D. Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film. ACS Appl. Mater. Interfaces 2018, 10, 21009–21017.

[34]

Yu, Y.; Zhang, Y. K.; Li, K.; Yan, C.; Zheng, Z. J. Bio-inspired chemical fabrication of stretchable transparent electrodes. Small 2015, 11, 3444–3449.

[35]

Chen, Z. J.; Lu, X.; Wang, H. X.; Chang, J.; Wang, D. R.; Wang, W. S.; Ng, S. W.; Rong, M. M.; Li, P. et al. Electrochemical replication and transfer for low-cost, sub-100 nm patterning of materials on flexible substrates. Adv. Mater. 2023, 35, e2210778.

[36]

Lu, X.; Zhang, Y. K.; Zheng, Z. J. Metal-based flexible transparent electrodes: Challenges and recent advances. Adv. Electron. Mater. 2021, 7, 2001121.

[37]

Yoo, D.; Won, D. J.; Cho, W.; Kim, S.; Kim, J. High-resolution and facile patterning of silver nanowire electrodes by solvent-free photolithographic technique using UV-curable pressure sensitive adhesive film. Small Methods 2021, 5, e2101049.

[38]

Pinheiro, T.; Correia, R.; Morais, M.; Coelho, J.; Fortunato, E.; Sales, M. G. F.; Marques, A. C.; Martins, R. Water peel-off transfer of electronically enhanced, paper-based laser-induced graphene for wearable electronics. ACS Nano 2022, 16, 20633–20646.

[39]

Fang, Y. S.; Li, Y.; Wang, X.; Zhou, Z. G.; Zhang, K.; Zhou, J.; Hu, B. Cryo-transferred ultrathin and stretchable epidermal electrodes. Small 2020, 16, e2000450.

[40]

Kang, M.; Lee, H.; Hong, S.; Choi, J. Molecular mechanics of Ag nanowire transfer processes subjected to contact loading by a PDMS substrate. Nanoscale Horiz. 2022, 7, 1073–1081.

[41]

Hong, S.; Lee, J.; Do, K.; Lee, M.; Kim, J. H.; Lee, S.; Kim, D. H. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv. Funct. Mater. 2017, 27, 1704353.

[42]

Ye, G.; Song, Z. Z.; Yu, T. H.; Tan, Q. S.; Zhang, Y.; Chen, T. L.; He, C. C.; Jin, L. H.; Liu, N. Dynamic Ag–N bond enhanced stretchable conductor for transparent and self-healing electronic skin. ACS Appl. Mater. Interfaces 2020, 12, 1486–1494.

[43]

Lee, C.; Oh, Y.; Yoon, I. S.; Kim, S. H.; Ju, B. K.; Hong, J. M. Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices. Sci. Rep. 2018, 8, 2763.

[44]

Wang, J. X.; Yan, C. Y.; Kang, W. B.; Lee, P. S. High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale 2014, 6, 10734–10739.

[45]

Cui, H. W.; Jiu, J. T.; Suganuma, K.; Uchida, H. Super flexible, highly conductive electrical compositor hybridized from polyvinyl alcohol and silver nano wires. RSC Adv. 2015, 5, 7200–7207.

[46]

Cai, Y. G.; Piao, X. Q.; Yao, X. J.; Nie, E.; Zhang, Z. J.; Sun, Z. A facile method to prepare silver nanowire transparent conductive film for heaters. Mater. Lett. 2019, 249, 66–69.

[47]

Goak, J. C.; Kim, T. Y.; Kim, D. U.; Chang, K. S.; Lee, C. S.; Lee, N. Stable heating performance of carbon nanotube/silver nanowire transparent heaters. Appl. Surf. Sci. 2020, 510, 145445.

[48]

Liu, J. F.; Ge, Y. J.; Zhang, D. M.; Han, M.; Li, M. X.; Zhang, M.; Duan, X. D.; Yang, Z. L.; Hu, J. W. Plasma cleaning and self-limited welding of silver nanowire films for flexible transparent conductors. ACS Appl. Nano Mater. 2021, 4, 1664–1671.

[49]

Calvimontes, A.; Mauersberger, P.; Nitschke, M.; Dutschk, V.; Simon, F. Effects of oxygen plasma on cellulose surface. Cellulose 2011, 18, 803–809.

[50]

Chen, Y. T.; Carmichael, R. S.; Carmichael, T. B. Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes. ACS Appl. Mater. Interfaces 2019, 11, 31210–31219.

[51]

Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y. D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S. H. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 2015, 27, 4744–4751.

[52]

Fan, H. W.; Li, K. R.; Li, Q.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Jin, W. S.; Wang, H. Z. Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. J. Mater. Chem. C 2017, 5, 9778–9785.

[53]

Han, J. K.; Yang, J. K.; Gao, W. W.; Bai, H. Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 2021, 31, 2010155.

[54]

Lee, H. J.; Oh, S.; Cho, K. Y.; Jeong, W. L.; Lee, D. S.; Park, S. J. Spontaneous and selective nanowelding of silver nanowires by electrochemical ostwald ripening and high electrostatic potential at the junctions for high-performance stretchable transparent electrodes. ACS Appl. Mater. Interfaces 2018, 10, 14124–14131.

[55]

Lin, Y.; Yuan, W.; Ding, C.; Chen, S. L.; Su, W. M.; Hu, H. L.; Cui, Z.; Li, F. S. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 2020, 12, 24074–24085.

[56]

Heo, G.; Pyo, K. H.; Lee, D. H.; Kim, Y.; Kim, J. W. Critical role of Diels–Adler adducts to realise stretchable transparent electrodes based on silver nanowires and silicone elastomer. Sci. Rep. 2016, 6, 25358.

[57]

Yang, Y.; Ding, S.; Araki, T.; Jiu, J.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res. 2016, 9, 401–414.

[58]

Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, e1706738.

[59]

Ding, S.; Jiu, J.; Gao, Y.; Tian, Y. H.; Araki, T.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, K. et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Appl. Mater. Interfaces 2016, 8, 6190–6199.

[60]

Yu, S. H.; Zhang, H. B.; Yang, P.; Zhao, L.; Wu, C.; Li, L. X. Highly conductive and stretching-insensitive transparent electrodes based on CuNWs. Mater. Lett. 2022, 316, 132023.

[61]

Kim, D. W.; Lee, G.; Pal, M.; Jeong, U. Highly deformable transparent Au film electrodes and their uses in deformable displays. ACS Appl. Mater. Interfaces 2020, 12, 41969–41980.

[62]
Guo, C. F.; Chen, Y.; Tang, L.; Wang, F.; Ren, Z. F0 Enhancing the scratch resistance by introducing chemical bonding in highly stretchable and transparent electrodes. Nano Lett. 2016, 16, 594–600.
[63]

Zhang, J.; Liu, X. J.; Xu, W. J.; Luo, W. H.; Li, M.; Chu, F. B.; Xu, L.; Cao, A. Y.; Guan, J. S.; Tang, S. M. et al. Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 2018, 18, 2903–2911.

[64]

Choi, T. Y.; Hwang, B. U.; Kim, B. Y.; Trung, T. Q.; Nam, Y. H.; Kim, D. N.; Eom, K.; Lee, N. E. Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Appl. Mater. Interfaces 2017, 9, 18022–18030.

[65]

Kim, M. S.; Kim, S.; Choi, J.; Kim, S.; Han, C.; Lee, Y.; Jung, Y.; Park, J.; Oh, S.; Bae, B. S. et al. Stretchable printed circuit board based on leak-free liquid metal interconnection and local strain control. ACS Appl. Mater. Interfaces 2022, 14, 1826–1837.

Nano Research
Pages 11303-11311
Cite this article:
Gu Y, Qiu Z, Zhu S, et al. Patternable and transferable silver nanowire conductors via plasma-enhanced cryo-transferring process towards highly stretchable and transparent capacitive touch sensor array. Nano Research, 2023, 16(8): 11303-11311. https://doi.org/10.1007/s12274-023-5832-6
Topics:

874

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 28 February 2021
Revised: 22 March 2021
Accepted: 07 April 2021
Published: 23 June 2023
© Tsinghua University Press 2023
Return