AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies

Changxin Qi,§Zhenyue Yang,§Jinyan ZhiRuichao ZhangJuan Wen( )Yong Qin( )
Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China

§ Changxin Qi and Zhenyue Yang contributed equally to this work.

Show Author Information

Graphical Abstract

The output signal’s management strategies can effectively improve the power supply capacity of triboelectric nanogenerator (TENG) and enhance the practicability of TENG-based energy harvesting system. The common output signal’s management strategies can be divided into the following points: switch management circuit, charge pump management circuit, power management circuit, as well as integrated circuit (IC) technology and TENG network.

Abstract

As a new branch of efficient and low-cost mechanical energy conversion technology, triboelectric nanogenerator (TENG) is a potential solution to provide a long-term power supply for the Internet of Things (IoT) sensors and portable electronic devices. However, due to inherent working properties of TENG itself such as extremely high internal impedance, pulse, and alternating current (AC) output, TENG can not directly supply power to loads such as batteries efficiently. Based on these, we describe TENG’s performance from a new perspective of powering ability. It consists of two aspects: the ability to transport charge effectively and the ability to output high power quality current steadily. In order to push forward the developments and applications of TENG, it is necessary to improve its power supply capacity from different perspectives. Fortunately, in recent years, a variety of output signal’s management strategies aiming at effectively managing the generated electricity and significantly improving powering ability of TENG have obtained significantly progress. Herein, this paper discusses the working mechanisms and different load characteristics of TENG at first to clarify the electric performance of TENG. Then, on basis of theoretical analysis, the output signal’s management strategies are elaborated from four aspects: improving the cycle output electricity of TENG, increasing the surface charge density of TENG, improving the power quality of TENG-based energy harvesting system, promoting the application of TENG through integrated circuit (IC) technology and TENG network, and the relevant principles and applications are discussed systematically. Finally, the advantages and disadvantages of the above output signal’s management strategies are summarized and discussed, and the future development of the output signal’s management strategies for TENG is prospected.

References

[1]

Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of things (IoT): A vision, architectural elements, and future directions. Fut. Gener. Comp. Syst. 2013, 29, 1645–1660.

[2]

Lee, I.; Lee, K. The internet of things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440.

[3]

Zou, Y. J.; Raveendran, V.; Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020, 77, 105303.

[4]

Wang, H. B.; Han, M. D.; Song, Y.; Zhang, H. X. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy 2021, 81, 105627.

[5]

Wang, Z. L. Self-powered nanotech. Sci. Am. 2008, 298, 82–87.

[6]

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

[7]
Hasan, M. A. M.; Wang, Y. H.; Bowen, C. R.; Yang, Y. 2D nanomaterials for effective energy scavenging. Nano-Micro Lett. 2021, 13, 82.
[8]

Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287.

[9]

Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994–10024.

[10]

Kang, D. H. P.; Chen, M. J.; Ogunseitan, O. A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 2013, 47, 5495–5503.

[11]

Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.

[12]

Zi, Y. L.; Lin, L.; Wang, J.; Wang, S. H.; Chen, J.; Fan, X.; Yang, P. K.; Yi, F.; Wang, Z. L. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 2015, 27, 2340–2347.

[13]

Gallup, D. L. Production engineering in geothermal technology: A review. Geothermics 2009, 38, 326–334.

[14]

Boyaghchi, F. A.; Chavoshi, M.; Sabeti, V. Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid. Energy 2015, 91, 685–699.

[15]

Chen, N.; Liu, M. Y.; Zhou, W. D. Fouling and corrosion properties of SiO2 coatings on copper in geothermal water. Ind. Eng. Chem. Res. 2012, 51, 6001–6017.

[16]

Olasolo, P.; Juárez, M. C.; Morales, M. P.; D´Amico, S.; Liarte, I. A. Enhanced geothermal systems (EGS): A review. Renew. Sust. Energ. Rev. 2016, 56, 133–144.

[17]

Lin, M. F.; Parida, K.; Cheng, X.; Lee, P. S. Flexible superamphiphobic film for water energy harvesting. Adv. Mater. Technol. 2017, 2, 1600186.

[18]

Mehdizadeh, S.; Yasukawa, M.; Kuno, M.; Kawabata, Y.; Higa, M. Evaluation of energy harvesting from discharged solutions in a salt production plant by reverse electrodialysis (RED). Desalination 2019, 467, 95–102.

[19]

Moran, E. F.; Lopez, M. C.; Moore, N.; Müller, N.; Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898.

[20]

Xiong, J. Q.; Lin, M. F.; Wang, J. X.; Gaw, S. L.; Parida, K.; Lee, P. S. Wearable all-fabric-based triboelectric generator for water energy harvesting. Adv. Energy Mater. 2017, 7, 1701243.

[21]

Yin, J.; Zhou, J. X.; Fang, S. M.; Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

[22]

Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

[23]

Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

[24]

Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Geisler, M.; Reboud, J. L. A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications. Smart Mater. Struct. 2016, 25, 045015.

[25]

Kwon, S. D. A T-shaped piezoelectric cantilever for fluid energy harvesting. Appl. Phys. Lett. 2010, 97, 164102.

[26]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[27]

Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

[28]

Bai, P.; Zhu, G.; Lin, Z. H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.

[29]
Kaltschmitt, M.; Streicher, W.; Wiese, A. Renewable Energy: Technology, Economics and Environment; Springer: Berlin, 2007.
[30]

Beeby, S. P.; Tudor, M. J.; White, N. M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195.

[31]

Cheng, G.; Lin, Z. H.; Lin, L.; Du, Z. L.; Wang, Z. L. Pulsed nanogenerator with huge instantaneous output power density. ACS Nano 2013, 7, 7383–7391.

[32]

Cheng, G.; Zheng, H. W.; Yang, F.; Zhao, L.; Zheng, M. L.; Yang, J. J.; Qin, H. F.; Du, Z. L.; Wang, Z. L. Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip-electrode air-discharging and application for UV sensing. Nano Energy 2018, 44, 208–216.

[33]

Qin, H.; Gu, G.; Shang, W.; Luo, H.; Zhang, W.; Cui, P.; Zhang, B.; Guo, J.; Cheng, G.; Du, Z. A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator. Nano Energy 2020, 68, 104372–104379.

[34]

Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

[35]

Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

[36]

Liu, W.; Wang, Z.; Wang, G.; Liu, G.; Chen, J.; Pu, X.; Xi, Y.; Wang, X.; Guo, H.; Hu, C. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426–1434.

[37]

Xu, L.; Bu, T. Z.; Yang, X. D.; Zhang, C.; Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633.

[38]

Li, X.; Sun, Y. An SSHI rectifier for triboelectric energy harvesting. IEEE Trans. Power Electron. 2020, 35, 3663–3678.

[39]

Ghaffarinejad, A.; Lu, Y.; Hinchet, R.; Galayko, D.; Hasani, J. Y.; Kim, S. W.; Basset, P. Bennet's doubler working as a power booster for triboelectric nano-generators. Electron. Lett. 2018, 54, 378–379.

[40]

Pu, X.; Liu, M. M.; Li, L. X.; Zhang, C.; Pang, Y. K.; Jiang, C. Y.; Shao, L. H.; Hu, W. G.; Wang, Z. L. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 2016, 3, 1500255.

[41]

Tang, W.; Zhou, T.; Zhang, C.; Fan, F. R.; Han, C. B.; Wang, Z. L. A power-transformed-and-managed triboelectric nanogenerator and its applications in a self-powered wireless sensing node. Nanotechnology 2014, 25, 225402.

[42]

Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.

[43]

Li, Q. Y.; Hu, Y. W.; Yang, Q. X.; Li, X. C.; Zhang, X. M.; Yang, H. K.; Ji, P. Y.; Xi, Y.; Wang, Z. L. A robust constant-voltage DC triboelectric nanogenerator using the ternary dielectric triboelectrification effect. Adv. Energy Mater. 2023, 13, 2202921.

[44]

Pathak, M.; Kumar, R. Synchronous inductor switched energy extraction circuits for triboelectric nanogenerator. IEEE Access 2021, 9, 76938–76954.

[45]

Niu, S.; Wang, X.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975–8984.

[46]

Yoo, D.; Lee, S.; Lee, J.-W.; Lee, K.; Go, E. Y.; Hwang, W.; Song, I.; Cho, S. B.; Kim, D. W.; Choi, D. et al. Reliable DC voltage generation based on the enhanced performance triboelectric nanogenerator fabricated by nanoimprinting-poling process and an optimized high efficiency integrated circuit. Nano Energy 2020, 69, 104388–104399.

[47]

Liang, X.; Jiang, T.; Feng, Y. W.; Lu, P. J.; An, J.; Wang, Z. L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123.

[48]

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

[49]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

[50]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

[51]

Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

[52]

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[53]

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy 2020, 68, 104272.

[54]

Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

[55]

Niu, S. M.; Zhou, Y. S.; Wang, S. H.; Liu, Y.; Lin, L.; Bando, Y.; Wang, Z. L. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 2014, 8, 150–156.

[56]

Niu, S. M.; Liu, Y.; Zhou, Y. S.; Wang, S. H.; Lin, L.; Wang, Z. L. Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans. Electron Devices 2015, 62, 641–647.

[57]

Shao, J. J.; Jiang, T.; Wang, Z. L. Theoretical foundations of triboelectric nanogenerators (TENGs). Sci. China Technol. Sci. 2020, 63, 1087–1109.

[58]

Su, Y.; Xie, G.; Tai, H.; Li, S.; Yang, B.; Wang, S.; Zhang, Q.; Du, H.; Zhang, H.; Du, X. et al. Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy 2018, 47, 316–324.

[59]

Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.

[60]

Qin, H. F.; Cheng, G.; Zi, Y. L.; Gu, G. Q.; Zhang, B.; Shang, W. Y.; Yang, F.; Yang, J. J.; Du, Z. L.; Wang, Z. L. High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 2018, 28, 1805216.

[61]

Yang, J. J.; Yang, F.; Zhao, L.; Shang, W. Y.; Qin, H. F.; Wang, S. J.; Jiang, X. H.; Cheng, G.; Du, Z. L. Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch. Nano Energy 2018, 46, 220–228.

[62]

Xia, K. Q.; Wu, D.; Fu, J. M.; Xu, Z. W. A pulse controllable voltage source based on triboelectric nanogenerator. Nano Energy 2020, 77, 105112.

[63]

Wang, H. M.; Xu, L.; Bai, Y.; Wang, Z. L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 2020, 11, 4203.

[64]

Hu, Y. W.; Li, Q. Y.; Long, L.; Yang, Q. X.; Fu, S. K.; Liu, W. L.; Zhang, X. M.; Yang, H. K.; Hu, C. G.; Xi, Y. Matching mechanism of charge excitation circuit for boosting performance of a rotary triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2022, 14, 48636–48646.

[65]

Guyomar, D.; Badel, A.; Lefeuvre, E.; Richard, C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 584–595.

[66]

Peng, Y. M.; Choo, K. D.; Oh, S.; Lee, I.; Jang, T.; Kim, Y.; Lim, J.; Blaauw, D.; Sylvester, D. An efficient piezoelectric energy harvesting interface circuit using a sense-and-set rectifier. IEEE J. Solid State Circuits 2019, 54, 3348–3361.

[67]

Ramadass, Y. K.; Chandrakasan, A. P. An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid State Circuits 2010, 45, 189–204.

[68]

Khushboo; Azad, P. Design and analysis of a synchronized interface circuit for triboelectric energy harvesting. J. Electron. Mater. 2020, 49, 2491–2501.

[69]

Kara, I.; Becermis, M.; Kamar, M. A. A.; Aktan, M.; Dogan, H.; Mutlu, S. A 70-to-2 V triboelectric energy harvesting system utilizing parallel-SSHI rectifier and DC-DC converters. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 210–223.

[70]

Le, T. T.; Han, J. F.; Jouanne, A. V.; Mayaram, K.; Fiez, T. S. Piezoelectric micro-power generation interface circuits. IEEE J. Solid-State Circuits 2006, 41, 1411–1420.

[71]
Dallago, E.; Frattini, G.; Miatton, D.; Ricotti, G.; Venchi, G. Integrable high-efficiency AC-DC converter for piezoelectric energy scavenging system. In Proceedings of the 2017 IEEE International Conference on Portable Information Devices, Orlando, FL, USA, 2007, pp 1–5.
[72]

De Queiroz, A. C. M. Variations of the doubler of electricity. Phys. Educ. 2019, 54, 035019.

[73]

Ghaffarinejad, A.; Hasani, J. Y.; Hinchet, R.; Lu, Y. X.; Zhang, H. M.; Karami, A.; Galayko, D.; Kim, S. W.; Basset, P. A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator. Nano Energy 2018, 51, 173–184.

[74]

Wang, H.; Zhu, J. X.; He, T. Y. Y.; Zhang, Z. X.; Lee, C. K. Programmed-triboelectric nanogenerators—A multi-switch regulation methodology for energy manipulation. Nano Energy 2020, 78, 105241.

[75]

Zhang, H. M.; Lu, Y. X.; Ghaffarinejad, A.; Basset, P. Progressive contact-separate triboelectric nanogenerator based on conductive polyurethane foam regulated with a Bennet doubler conditioning circuit. Nano Energy 2018, 51, 10–18.

[76]

Wang, J. L.; Li, Y. K.; Xie, Z. J.; Xu, Y. H.; Zhou, J. W.; Cheng, T. H.; Zhao, H. W.; Wang, Z. L. Cylindrical direct-current triboelectric nanogenerator with constant output current. Adv. Energy Mater. 2020, 10, 1904227.

[77]

Liu, D.; Yin, X.; Guo, H. Y.; Zhou, L. L.; Li, X. Y.; Zhang, C. L.; Wang, J.; Wang, Z. L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 2019, 5, eaav6437.

[78]

Zhao, Z. H.; Dai, Y. J.; Liu, D.; Zhou, L. L.; Li, S. X.; Wang, Z. L.; Wang, J. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nat. Commun. 2020, 11, 6186.

[79]

Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

[80]

Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.

[81]

Zhai, N. N.; Wen, Z.; Chen, X. P.; Wei, A. M.; Sha, M.; Fu, J. J.; Liu, Y. N.; Zhong, J.; Sun, X. H. Blue energy collection toward all-hours self-powered chemical energy conversion. Adv. Engergy Mater. 2020, 10, 2001041.

[82]

Wang, Z.; Liu, W.; He, W.; Guo, H.; Long, L.; Xi, Y.; Wang, X.; Liu, A.; Hu, C. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule 2021, 5, 441–455.

[83]

Zi, Y. L.; Guo, H. Y.; Wang, J.; Wen, Z.; Li, S. M.; Hu, C. G.; Wang, Z. L. An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 2017, 31, 302–310.

[84]

Liu, W. L.; Wang, Z.; Wang, G.; Zeng, Q. X.; He, W. C.; Liu, L. Y.; Wang, X.; Xi, Y.; Guo, H. Y.; Hu, C. G. et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat. Commun. 2020, 11, 1883.

[85]

Park, I.; Maeng, J.; Shim, M.; Jeong, J.; Kim, C. A high-voltage dual-input buck converter achieving 52.9% maximum end-to-end efficiency for triboelectric energy-harvesting applications. IEEE J. Solid State Circuits 2020, 55, 1324–1336.

[86]

Ottman, G. K.; Hofmann, H. F.; Lesieutre, G. A. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 2003, 18, 696–703.

[87]

Harmon, W.; Bamgboje, D.; Guo, H. Y.; Hu, T. S.; Wang, Z. L. Self-driven power management system for triboelectric nanogenerators. Nano Energy 2020, 71, 104642.

[88]

Liang, X.; Jiang, T.; Liu, G. X.; Xiao, T. X.; Xu, L.; Li, W.; Xi, F. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1807241.

[89]
Park, I.; Maeng, J.; Shim, M.; Jeong, J.; Kim, C. A bidirectional high-voltage dual-input buck converter for triboelectric energy-harvesting interface achieving 70.72% end-to-end efficiency. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019, pp C326–C327.
[90]

Zhang, H. M.; Galayko, D.; Basset, P. A self-sustained energy storage system with an electrostatic automatic switch and a buck converter for triboelectric nanogenerators. J. Phys. Conf. Ser. 2019, 1407, 012016–012020.

[91]

Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836–105844.

[92]

Khan, M. B.; Kim, D. H.; Han, J. H.; Saif, H.; Lee, H.; Lee, Y.; Kim, M.; Jang, E.; Hong, S. K.; Joe, D. J. et al. Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit. Nano Energy 2019, 58, 211–219.

[93]
Luo, L.; Bao, D.; Yu, W.; Zhang, Z.; Ren, T. A power manager system with 78% efficiency for high-voltage triboelectric nanogenerators. Sci. China Inf. Sci. 2017, 60, 029401: 1–029401: 3.
Nano Research
Pages 11783-11800
Cite this article:
Qi C, Yang Z, Zhi J, et al. Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies. Nano Research, 2023, 16(9): 11783-11800. https://doi.org/10.1007/s12274-023-5834-4
Topics:
Part of a topical collection:

753

Views

13

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 03 March 2023
Revised: 28 April 2023
Accepted: 15 May 2023
Published: 15 July 2023
© Tsinghua University Press 2023
Return