AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interlayer friction behavior of molybdenum ditelluride with different structures

Lina ZhangXinfeng Tan( )Jianguo JiaoDan Guo( )Jianbin Luo( )
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

The experimental difference in the average interfacial friction coefficient between 1T'/1T' (2.025 × 10−4) and 2H/2H (3.086 × 10−4) can be explained by the relative magnitude of the interlayer shear strength, which was calculated through density functional theory (DFT) simulations. Additionally, the low friction coefficient of 6.875 × 10−5 observed at the 1T'/2H interface is attributed to the weak interlayer Coulomb interaction and the potential energy corrugation modulation caused by the lattice mismatch between the layers.

Abstract

The interlayer friction behavior of two-dimensional transition metal dichalcogenides (TMDCs) as crucial solid lubricants has attracted extensive attention in the field of tribology. In this study, the interlayer friction is measured by laterally pushing the MoTe2 powder on the MoTe2 substrate with the atomic force microscope (AFM) tip, and density functional theory (DFT) simulations are used to rationalize the experimental results. The experimental results indicate that the friction coefficient of the 1T'-MoTe2/1T'-MoTe2 interface is 2.025 × 10−4, which is lower than that of the 2H-MoTe2/2H-MoTe2 interface (3.086 × 10−4), while the friction coefficient of the 1T'-MoTe2/2H-MoTe2 interface is the lowest at 6.875 × 10−5. The lower interfacial friction of 1T'-MoTe2/1T'-MoTe2 compared to 2H-MoTe2/2H-MoTe2 interface can be explained by considering the relative magnitudes of the ideal average shear strengths and maximum shear strengths based on the interlayer potential energy. Additionally, the smallest interlayer friction observed at the 1T'-MoTe2/2H-MoTe2 heterojunction is attributed to the weak interlayer electrostatic interaction and reduction in potential energy corrugation caused by the incommensurate contact. This work suggests that MoTe2 has comparable interlayer friction properties to MoS2 and is expected to reduce interlayer friction in the future by inducing the 2H-1T' phase transition.

Electronic Supplementary Material

Download File(s)
12274_2023_5835_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R. H.; Zhang, Y. P.; Mahmood, A.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440.

[2]

Zhu, S.; Ni, J. F.; Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825–1841.

[3]

Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921.

[4]

Zhan, H.; Tan, X. F.; Xie, G. X.; Guo, D. Reduced fracture strength of 2D materials induced by interlayer friction. Small 2021, 17, 2005996.

[5]

Liu, K.; Cheng, J. T.; Zhao, X. J.; Zhu, Y. D.; Ren, X. Y.; Shi, J. L.; Guo, Z. X.; Shan, C. X.; Liu, H. J.; Li, S. F. Negative differential friction coefficients of two-dimensional commensurate contacts dominated by electronic phase transition. Nano Res. 2022, 15, 5758–5766.

[6]

Luo, J. B.; Zhou, X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 2020, 8, 643–665.

[7]

He, F.; Yang, X.; Bian, Z. L.; Xie, G. X.; Guo, D.; Luo, J. B. In-plane potential gradient induces low frictional energy dissipation during the stick-slip sliding on the surfaces of 2D materials. Small 2019, 15, 1904613.

[8]

Gong, K. L.; Lou, W. J.; Zhao, G. Q.; Wu, X. H.; Wang, X. B. Investigation on tribological behaviors of MoS2 and WS2 quantum dots as lubricant additives in ionic liquids under severe conditions. Friction 2020, 8, 674–683.

[9]

Li, W. B.; Qian, X. F.; Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 2021, 6, 829–846.

[10]

Liu, Y. M.; Wang, K.; Xu, Q.; Zhang, J.; Hu, Y. Z.; Ma, T. B.; Zheng, Q. S.; Luo, J. B. Superlubricity between graphite layers in ultrahigh vacuum. ACS Appl. Mater. Interfaces 2020, 12, 43167–43172.

[11]

Ru, G. L.; Qi, W. H.; Tang, K. W.; Wei, Y. R.; Xue, T. W. Interlayer friction and superlubricity in bilayer graphene and MoS2/MoSe2 van der Waals heterostructures. Tribol. Int. 2020, 151, 106483.

[12]

Wu, S. C.; Meng, Z. S.; Tao, X. M.; Wang, Z. Superlubricity of molybdenum disulfide subjected to large compressive strains. Friction 2022, 10, 209–216.

[13]

Wang, L. F.; Ma, T. B.; Hu, Y. Z.; Zheng, Q. S.; Wang, H.; Luo, J. B. Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: A first-principles study. Nanotechnology 2014, 25, 385701.

[14]

Wang, C. Q.; Chen, W. G.; Zhang, Y. S.; Sun, Q.; Jia, Y. Effects of vdW interaction and electric field on friction in MoS2. Tribol. Lett. 2015, 59, 7.

[15]

Li, H.; Wang, J. H.; Gao, S.; Chen, Q.; Peng, L. M.; Liu, K. H.; Wei, X. L. Superlubricity between MoS2 monolayers. Adv. Mater. 2017, 29, 1701474.

[16]

Li, P. X.; Wang, W. Y.; Zou, C. X.; Gao, X. Y.; Wang, J.; Fan, X. L.; Song, H. F.; Li, J. S. Lattice distortion optimized hybridization and superlubricity of MoS2/MoSe2 heterointerfaces via Moiré patterns. Appl. Surf. Sci. 2023, 613, 155760.

[17]

Büch, H.; Rossi, A.; Forti, S.; Convertino, D.; Tozzini, V.; Coletti, C. Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res. 2018, 11, 5946–5956.

[18]

Vazirisereshk, M. R.; Hasz, K.; Zhao, M. Q.; Johnson, A. T. C.; Carpick, R. W.; Martini, A. Nanoscale friction behavior of transition-metal dichalcogenides: Role of the chalcogenide. ACS Nano 2020, 14, 16013–16021.

[19]

Wang, L. F.; Ma, T. B.; Hu, Y. Z.; Wang, H.; Shao, T. M. Ab initio study of the friction mechanism of fluorographene and graphane. J. Phys. Chem. C 2013, 117, 12520–12525.

[20]

Lin, J. J.; Wang, H.; Tay, R. Y.; Li, H. L.; Shakerzadeh, M.; Tsang, S. H.; Liu, Z.; Teo, E. H. T. Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils. Nano Res. 2020, 13, 2371–2377.

[21]

Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2 and Mo1−xWxTe2-based resistive memories. Nat. Mater. 2019, 18, 55–61.

[22]

Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2016, 16, 188–193.

[23]

Tan, Y.; Luo, F.; Zhu, M. J.; Xu, X. L.; Ye, Y.; Li, B.; Wang, G.; Luo, W.; Zheng, X. M.; Wu, N. N. et al. Controllable 2H-to-1T' phase transition in few-layer MoTe2. Nanoscale 2018, 10, 19964–19971.

[24]

Wu, S.; He, F.; Xie, G. X.; Bian, Z. L.; Ren, Y. L.; Liu, X. Y.; Yang, H. J.; Guo, D.; Zhang, L.; Wen, S. Z. et al. Super-slippery degraded black phosphorus/silicon dioxide interface. ACS Appl. Mater. Interfaces 2020, 12, 7717–7726.

[25]

Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.

[26]

Tan, X. F.; Guo, D.; Luo, J. B. Dynamic friction energy dissipation and enhanced contrast in high frequency bimodal atomic force microscopy. Friction 2022, 10, 748–761.

[27]

Tan, X. F.; Shi, S.; Guo, D.; Luo, J. B. Dynamical characterization of micro cantilevers by different excitation methods in dynamic atomic force microscopy. Rev. Sci. Instrum. 2018, 89, 115109.

[28]

An, S. M.; Lee, M.; Kim, B.; Jhe, W. Capillary grip-induced stick-slip motion. Nano Res. 2022, 15, 7384–7391.

[29]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci 1996, 6, 15–50.

[30]

Zhong, W.; Tománek, D. First-principles theory of atomic-scale friction. Phys. Rev. Lett. 1990, 64, 3054–3057.

[31]

Wang, J. J.; Tiwari, A.; Gao, J.; Huang, Y.; Jia, Y.; Persson, B. N. J. Dependency of sliding friction for two-dimensional systems on electronegativity. Phys. Rev. B 2022, 105, 165431.

[32]

Levita, G.; Molinari, E.; Polcar, T.; Righi, M. C. First-principles comparative study on the interlayer adhesion and shear strength of transition-metal dichalcogenides and graphene. Phys. Rev. B 2015, 92, 085434.

[33]

Li, Q.; Su, F. H.; Tang, G. B.; Xu, X.; Chen, Y. J.; Sun, J. F. Atomic-scale friction of black phosphorus from first-principles calculations: Insensitivity of friction under the high-load. Tribol. Int. 2022, 172, 107590.

[34]

Song, Y. M.; Mandelli, D.; Hod, O.; Urbakh, M.; Ma, M.; Zheng, Q. S. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 2018, 17, 894–899.

[35]

Irving, B. J.; Nicolini, P.; Polcar, T. On the lubricity of transition metal dichalcogenides: An ab initio study. Nanoscale 2017, 9, 5597–5607.

[36]

Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

[37]

Sader, J. E.; Chon, J. W. M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969.

[38]

Varenberg, M.; Etsion, I.; Halperin, G. An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 2003, 74, 3362–3367.

[39]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[40]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[41]

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201.

[42]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

Nano Research
Pages 11375-11382
Cite this article:
Zhang L, Tan X, Jiao J, et al. Interlayer friction behavior of molybdenum ditelluride with different structures. Nano Research, 2023, 16(8): 11375-11382. https://doi.org/10.1007/s12274-023-5835-3
Topics:

970

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 04 March 2023
Revised: 09 May 2023
Accepted: 14 May 2023
Published: 17 July 2023
© Tsinghua University Press 2023
Return