AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Growth of boron nitride nanotubes from magnesium-based catalysts

Ying Wang1,§Kai Zhang1,§Liyun Wu1,§Xuhua He1Qian He1Nanyang Wang1Zhengyang Zhou1Chaowei Li2Yue Hu3Yagang Yao1( )
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, China
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China

§ Ying Wang, Kai Zhang, and Liyun Wu contributed equally to this work.

Show Author Information

Graphical Abstract

This study reports an efficient method for growing high-quality boron nitride nanotubes (BNNTs) via chemical vapor deposition (CVD) of low-melting-point precursors, and explores the application of BNNTs in thermally conductive composites.

Abstract

This study reports an efficient method for growing high-quality boron nitride nanotubes (BNNTs) via chemical vapor deposition of low-melting-point precursors—magnesium diboride (MgB2), magnesium nitride (Mg3N2), and diboron trioxide (B2O) at a growth temperature of 1000–1300 °C. The strong oxygen-capturing ability of Mg3N2 inhibits the formation of high-melting-point Mg3B2O6, which helps MgB2 to maintain an efficient and stable catalytic capacity, thereby enhancing its growth efficiency and utilization of the boron source. Moreover, polydimethylsiloxane (PDMS) composites formed from these BNNTs demonstrated much greater thermal conductivities than pure PDMS. Thus, this novel strategy for preparing BNNTs is efficient, and they have great potential for application as thermal interface materials.

Electronic Supplementary Material

Download File(s)
12274_2023_5836_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron nitride nanotubes. Science 1995, 269, 966–967.

[2]

Zhi, C. Y.; Bando, Y.; Tang, C. C.; Huang, Q.; Golberg, D. Boron nitride nanotubes: Functionalization and composites. J. Mater. Chem. 2008, 18, 3900–3908.

[3]

Zhi, C. Y.; Zhang, L. J.; Bando, Y.; Terao, T.; Tang, C. C.; Kuwahara, H.; Golberg, D. New crystalline phase induced by boron nitride nanotubes in polyaniline. J. Phys. Chem. C 2008, 112, 17592–17595.

[4]

Terao, T.; Zhi, C. Y.; Bando, Y.; Mitome, M.; Tang, C. C.; Golberg, D. Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C 2010, 114, 4340–4344.

[5]
Samanta, S. K.; Gomathi, A.; Bhattacharya, S.; Rao, C. N. R.; Novel nanocomposites made of boron nitride nanotubes and a physical gel. Langmuir 2010, 26, 12230–12236.
[6]

Chen, Y.; Zou, J.; Campbell, S. J.; Le Caer, G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432.

[7]

Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462.

[8]

Liu, Z.; Song, L.; Zhao, S. Z.; Huang, J. Q.; Ma, L. L.; Zhang, J. N.; Lou, J.; Ajayan, P. M. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 2011, 11, 2032–2037.

[9]

Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

[10]

Chopra, N. G.; Zettl, A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 1998, 105, 297–300.

[11]

Lim, S. H.; Luo, J. Z.; Ji, W.; Lin, J. Y. Synthesis of boron nitride nanotubes and its hydrogen uptake. Catal. Today 2007, 120, 346–350.

[12]

Shevlin, S. A.; Guo, Z. X. Hydrogen sorption in defective hexagonal BN sheets and BN nanotubes. Phys. Rev. B 2007, 76, 024104.

[13]

Wang, L. J.; Han, D. B.; Luo, J.; Li, T. T.; Lin, Z. Y.; Yao, Y. G. Highly efficient growth of boron nitride nanotubes and the thermal conductivity of their polymer composites. J. Phys. Chem. C 2018, 122, 1867–1873.

[14]

E, S. F.; Geng, R. J.; Zhu, Z. Z.; Xie, L. Y.; Lu, W. B.; Li, C. W.; Yao, Y. G. Large-scale fabrication of boron nitride nanotubes and their application in thermoplastic polyurethane based composite for improved thermal conductivity. Ceram. Int. 2018, 44, 22794–22799.

[15]

Radosavljević, M.; Appenzeller, J.; Derycke, V.; Martel, R.; Avouris, P.; Loiseau, A.; Cochon, J. L.; Pigache, D. Electrical properties and transport in boron nitride nanotubes. Appl. Phys. Lett. 2003, 82, 4131–4133.

[16]

Chen, Z. G.; Zou, J.; Liu, Q. F.; Sun, C. H.; Liu, G.; Yao, X. D.; Li, F.; Wu, B.; Yuan, X. L.; Sekiguchi, T. et al. Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes. ACS Nano 2008, 2, 1523–1532.

[17]

Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Grafting boron nitride nanotubes: From polymers to amorphous and graphitic carbon. J. Phys. Chem. C 2007, 111, 1230–1233.

[18]

Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 1996, 76, 4737–4740.

[19]

Golberg, D.; Bando, Y.; Eremets, M.; Takemura, K.; Kurashima, K.; Yusa, H. Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 1996, 69, 2045–2047.

[20]

Arenal, R.; Stephan, O.; Cochon, J. L.; Loiseau, A. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J. Am. Chem. Soc. 2007, 129, 16183–16189.

[21]

Fathalizadeh, A.; Pham, T.; Mickelson, W.; Zettl, A. Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma. Nano Lett. 2014, 14, 4881–4886.

[22]

Tang, C. C.; Bando, Y.; Sato, T.; Kurashima, K. A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 2002, 22, 1290–1291.

[23]

Tang, C. C.; Bando, Y.; Golberg, D. Multi-walled BN nanotubes synthesized by carbon-free method. J. Solid State Chem. 2004, 177, 2670–2674.

[24]

Zhi, C. Y.; Bando, Y.; Tan, C. C.; Golberg, D. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 2005, 135, 67–70.

[25]

Ahmad, P.; Khandaker, M. U.; Amin, Y. M. Synthesis of boron nitride nanotubes by argon supported thermal chemical vapor deposition. Phys. E Low dimens. Syst. Nanostruct. 2015, 67, 33–37.

[26]

Matveev, A. T.; Firestein, K. L.; Steinman, A. E.; Kovalskii, A. M.; Lebedev, O. I.; Shtansky, D. V.; Golberg, D. Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter. Nano Res. 2015, 8, 2063–2072.

[27]

E, S. F.; Long, X. Y.; Li, C. W.; Geng, R. J.; Han, D. B.; Lu, W. B.; Yao, Y. G. Boron nitride nanotubes grown on stainless steel from a mixture of diboron trioxide and boron. Chem. Phys. Lett. 2017, 687, 307–311.

[28]

Chen, Y.; Chadderton, L. T.; Gerald, J. F.; Williams, J. S. A solid-state process for formation of boron nitride nanotubes. Appl. Phys. Lett. 1999, 74, 2960–2962.

[29]

Chen, Y.; Fitz Gerald, J.; Williams, J. S.; Bulcock, S. Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 1999, 299, 260–264.

[30]

Chen, H.; Chen, Y.; Liu, Y.; Fu, L.; Huang, C. Llewellyn, D,. Over 1. 0 mm-long boron nitride nanotubes. Chem. Phys. Lett. 2008, 463, 130–133.

[31]

Li, L. H.; Chen, Y.; Glushenkov, A. M. Synthesis of boron nitride nanotubes by boron ink annealing. Nanotechnology 2010, 21, 105601.

[32]

Tang, C. C.; Ding, X. X.; Huang, X. T.; Gan, Z. W.; Qi, S. R.; Liu, W.; Fan, S. S. Effective growth of boron nitride nanotubes. Chem. Phys. Lett. 2002, 356, 254–258.

[33]

Lee, C. H.; Xie, M.; Kayastha, V.; Wang, J. S.; Yap, Y. K. Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mat. 2010, 22, 1782–1787.

[34]

Ahmad, P.; Khandaker, M. U.; Amin, Y. M.; Muhammad, N.; Usman, A. R.; Amin, M. The effect of reaction atmosphere and growth duration on the size and morphology of boron nitride nanotubes. New J. Chem. 2015, 39, 7912–7915.

[35]

Üçyıldız, A.; Girgin, I. Controlled synthesis, characterization and thermal properties of Mg2B2O5. Cent. Eur. J. Chem. 2010, 8, 758–765.

[36]

Wei, Q. Q.; He, J. T.; Xue, C. S. Experimental analysis of the stability of Mg3N2 powder. Micronanoelectron. Technol. 2014, 51, 429–433.

[37]

Zhang, D. F.; Zhang, K.; E, S. F.; Liu, D. P.; Li, C. W.; Yao, Y. G. The MgB2-catalyzed growth of boron nitride nanotubes using B/MgO as a boron containing precursor. Nanoscale Adv. 2020, 2, 2731–2737.

[38]

E, S. F.; Wu, L. L.; Li, C. W.; Zhu, Z. Z.; Long, X. Y.; Geng, R. J.; Zhang, J.; Li, Z. Y.; Lu, W. B.; Yao, Y. G. Growth of boron nitride nanotubes from magnesium diboride catalysts. Nanoscale 2018, 10, 13895–13901.

[39]

Wang, S. S.; Feng, D. Y.; Guan, H.; Guo, Y. Q.; Liu, X.; Yan, C.; Zhang, L.; Gu, J. W. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “Line-Plane”-like hetero-structured fillers. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106911.

[40]

Zeng, X. L.; Sun, J. J.; Yao, Y. M.; Sun, R.; Xu, J. B.; Wong, C. P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178.

Nano Research
Pages 11048-11053
Cite this article:
Wang Y, Zhang K, Wu L, et al. Growth of boron nitride nanotubes from magnesium-based catalysts. Nano Research, 2023, 16(8): 11048-11053. https://doi.org/10.1007/s12274-023-5836-2
Topics:

888

Views

6

Crossref

6

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 14 March 2023
Revised: 01 May 2023
Accepted: 12 May 2023
Published: 23 June 2023
© Tsinghua University Press 2023
Return