AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Tumor-responsive dynamic nanoassemblies for boosted photoimmunotherapy

Dao Shi1,§Nan Wang2,§Jie Zhang3,§Xi Hu4,5Qiyue Wang1,4Ruixue Xiao1Baoyue Ding3( )Fangyuan Li2,4,6( )Daishun Ling1,2,4( )
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
World Laureates Association (WLA) Laboratories, Shanghai 201203, China
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China

§ Dao Shi, Nan Wang, and Jie Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Through the ingenious combination of stimuli-responsive compounds, immunomodulatory agents, and photosensitizers, the adaptive tumor-responsive dynamic nanoassemblies-based photoimmunotherapy (PIT) agents can be activated by tumor microenvironment (TME) stimuli (e.g., pH, ROS, GSH, hypoxia, and enzyme). These smart agents boost PIT efficacy by programming the pharmacokinetics and location of photosensitizers/immunomodulators to achieve the enhanced activation of immune response, the improved infiltration of cytotoxic T lymphocytes, the reshaped immunosuppressive TME, and the immune checkpoint blockade.

Abstract

Photoimmunotherapy (PIT) is an emerging therapeutic approach that integrates phototherapy and immunotherapy to eliminate primary tumors under an appropriate dosage of local light irradiation, while simultaneously preventing tumor metastasis and recurrence by activating the host antitumor immune response. Tumor-responsive dynamic nanoassemblies (TDNs) have evolved from being a mere curiosity to a promising platform for high-performance PIT. However, the dynamic nano-bio interaction between TDNs and tumor microenvironment remains poorly understood, which shall be critical for precise control of TDNs assembling/disassembling behavior and superior PIT efficacy. To deepen the understanding of the structure–function relationship of TDNs, this review introduces the rational design, nano-bio interactions, and controllable functionalities of cutting-edge TDNs for enhanced PIT. Moreover, the synergetic mechanism between TDNs-based PIT and immunomodulatory agents-mediated immunomodulation is particularly emphasized. Finally, the challenges and future perspectives in this emerging field are assessed.

References

[1]

Shao, W.; Yang, C.; Li, F. Y.; Wu, J. H.; Wang, N.; Ding, Q.; Gao, J. Q.; Ling, D. S. Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nano-Micro Lett. 2020, 12, 147.

[2]

Zou, J. H.; Li, L.; Yang, Z.; Chen, X. Y. Phototherapy meets immunotherapy: A win-win strategy to fight against cancer. Nanophotonics 2021, 10, 3229–3245.

[3]

Jo, Y. U.; Sim, H.; Lee, C. S.; Kim, K. S.; Na, K. Solubilized chlorin e6-layered double hydroxide complex for anticancer photodynamic therapy. Biomater. Res. 2022, 26, 23.

[4]

Liu, Y. M.; Zhang, L.; Chang, R.; Yan, X. H. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem. Commun. 2022, 58, 2247–2258.

[5]

Seo, H. S.; Wang, C. P. J.; Park, W.; Park, C. G. Short review on advances in hydrogel-based drug delivery strategies for cancer immunotherapy. Tissue Eng. Regen. Med. 2022, 19, 263–280.

[6]

Wang, Y. J.; Song, G. S.; Liao, S. Y.; Qin, Q. Q.; Zhao, Y.; Shi, L. N.; Guan, K. S.; Gong, X. Y.; Wang, P.; Yin, X. et al. Cyclic amplification of the afterglow luminescent nanoreporter enables the prediction of anti-cancer efficiency. Angew. Chem., Int. Ed. 2021, 60, 19779–19789.

[7]

Nasseri, B.; Alizadeh, E.; Bani, F.; Davaran, S.; Akbarzadeh, A.; Rabiee, N.; Bahadori, A.; Ziaei, M.; Bagherzadeh, M.; Saeb, M. R. et al. Nanomaterials for photothermal and photodynamic cancer therapy. Appl. Phys. Rev. 2022, 9, 011317.

[8]

Chen, M. C.; Chen, Q. Biomaterial-assisted photoimmunotherapy for cancer. Biomater. Sci. 2020, 8, 5846–5858.

[9]

Liao, S. Y.; Wang, Y. J.; Li, Z.; Zhang, Y.; Yin, X.; Huan, S. Y.; Zhang, X. B.; Liu, S. L.; Song, G. S. A novel afterglow nanoreporter for monitoring cancer therapy. Theranostics 2022, 12, 6883–6897.

[10]

Sun, H. T.; Zhang, Q.; Li, J. C.; Peng, S. J.; Wang, X. L.; Cai, R. Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 2021, 37, 101073.

[11]

Li, Y.; Li, X. S.; Zhou, F. F.; Doughty, A.; Hoover, A. R.; Nordquist, R. E.; Chen, W. R. Nanotechnology-based photoimmunological therapies for cancer. Cancer Lett. 2019, 442, 429–438.

[12]

Kato, T.; Wakiyama, H.; Furusawa, A.; Choyke, P. L.; Kobayashi, H. Near infrared photoimmunotherapy: A review of targets for cancer therapy. Cancers 2021, 13, 2535.

[13]

Maruoka, Y.; Wakiyama, H.; Choyke, P. L.; Kobayashi, H. Near infrared photoimmunotherapy for cancers: A translational perspective. eBioMedicine 2021, 70, 103501.

[14]

Wakiyama, H.; Furusawa, A.; Okada, R.; Inagaki, F.; Kato, T.; Maruoka, Y.; Choyke, P. L.; Kobayashi, H. Increased immunogenicity of a minimally immunogenic tumor after cancer-targeting near infrared photoimmunotherapy. Cancers 2020, 12, 3747.

[15]

Guo, R. R.; Wang, S. Q.; Zhao, L.; Zong, Q. D.; Li, T. C.; Ling, G. X.; Zhang, P. Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 2022, 282, 121425.

[16]

Hameed, S.; Mo, S. Y.; Mustafa, G.; Bajwa, S. Z.; Khan, W. S.; Dai, Z. F. Immunological consequences of nanoparticle-mediated antitumor photoimmunotherapy. Adv. Ther. 2020, 3, 1900101.

[17]

Xue, X. D.; Qu, H. J.; Li, Y. P. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration 2022, 2, 20210134.

[18]

Yue, R. Y.; Zhang, C.; Xu, L.; Wang, Y. J.; Guan, G. Q.; Lei, L. L.; Zhang, X. B.; Song, G. S. Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem 2022, 8, 1956–1981.

[19]

Cabral, H.; Kinoh, H.; Kataoka, K. Tumor-targeted nanomedicine for immunotherapy. Acc. Chem. Res. 2020, 53, 2765–2776.

[20]

Yan, S.; Zhao, P.; Yu, T. T.; Gu, N. Current applications and future prospects of nanotechnology in cancer immunotherapy. Cancer Biol. Med. 2019, 16, 486–497.

[21]

Dai, H. X.; Fan, Q.; Wang, C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration 2022, 2, 20210157.

[22]

Ng, C. W.; Li, J. C.; Pu, K. Y. Recent progresses in phototherapy-synergized cancer immunotherapy. Adv. Funct. Mater. 2018, 28, 1804688.

[23]

Chen, Y. C.; Xiong, T.; Zhao, X. Z.; Du, J. J.; Sun, W.; Fan, J. L.; Peng, X. J. Tumor cell-responsive photodynamic immunoagent for immunogenicity-enhanced orthotopic and remote tumor therapy. Adv. Healthc. Mater. 2023, 12, 2202085.

[24]

Ravegnini, G.; Fosso, B.; Ricci, R.; Gorini, F.; Turroni, S.; Serrano, C.; Pilco-Janeta, D. F.; Zhang, Q. Q.; Zanotti, F.; De Robertis, M. et al. Analysis of microbiome in gastrointestinal stromal tumors: Looking for different players in tumorigenesis and novel therapeutic options. Cancer Sci. 2022, 113, 2590–2599.

[25]

Neri, D.; Supuran, C. T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 2011, 10, 767–777.

[26]

Lee, S. H.; Griffiths, J. R. How and why are cancers acidic? Carbonic anhydrase IX and the homeostatic control of tumour extracellular pH. Cancers 2020, 12, 1616.

[27]

Relloso, M.; Cheng, T. Y.; Im, J. S.; Parisini, E.; Roura-Mir, C.; DeBono, C.; Zajonc, D. M.; Murga, L. F.; Ondrechen, M. J.; Wilson, I. A. et al. pH-dependent interdomain tethers of CD1b regulate its antigen capture. Immunity 2008, 28, 774–786.

[28]

Liu, J.; Huang, Y. R.; Kumar, A.; Tan, A.; Jin, S. B.; Mozhi, A.; Liang, X. J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv 2014, 32, 693–710.

[29]

Liu, J.; He, S. S.; Luo, Y. L.; Zhang, Y.; Du, X. J.; Xu, C.; Pu, K. Y.; Wang, J. Tumor-microenvironment-activatable polymer nano-immunomodulator for precision cancer photoimmunotherapy. Adv. Mater. 2022, 34, 2106654.

[30]

Jin, C.; Wang, Y.; Li, Y. F.; Li, J. B.; Zhou, S.; Yu, J.; Wang, Z. M.; Yu, Y. Y.; Zhang, H. T.; Wang, D. et al. Doxorubicin-near infrared dye conjugate induces immunogenic cell death to enhance cancer immunotherapy. Int. J. Pharm. 2021, 607, 121027.

[31]

Zhang, Y.; Kim, I.; Lu, Y. M.; Xu, Y. X.; Yu, D. G.; Song, W. L. Intelligent poly(L-histidine)-based nanovehicles for controlled drug delivery. J. Control. Release 2022, 349, 963–982.

[32]

Gao, Y. J.; Qiao, Z. Y.; Wang, H. Polymers with tertiary amine groups for drug delivery and bioimaging. Sci. China Chem. 2016, 59, 991–1002.

[33]

Zheng, Y. D.; Zhang, Z. Z.; Liu, Q.; Wang, Y.; Hao, J. L.; Kang, Z. Y.; Wang, C.; Zhao, X. Z.; Liu, Y.; Shi, L. Q. A near-infrared light-excitable immunomodulating nano-photosensitizer for effective photoimmunotherapy. Biomater. Sci. 2021, 9, 4191–4198.

[34]

Liu, Y. L.; Pan, Y. X.; Cao, W.; Xia, F. F.; Liu, B.; Niu, J. Q.; Alfranca, G.; Sun, X. Y.; Ma, L. J.; de la Fuente, J. M. et al. A tumor microenvironment responsive biodegradable CaCO3/MnO2-based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics 2019, 9, 6867–6884.

[35]

Lu, H. W.; Chen, A.; Zhang, X. D.; Wei, Z. X.; Cao, R.; Zhu, Y.; Lu, J. X.; Wang, Z. L.; Tian, L. L. A pH-responsive T1-T2 dual-modal MRI contrast agent for cancer imaging. Nat. Commun. 2022, 13, 7948.

[36]

Shi, Z. Q.; Li, Q. Q.; Mei, L. pH-sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett. 2020, 31, 1345–1356.

[37]

Huber, V.; Camisaschi, C.; Berzi, A.; Ferro, S.; Lugini, L.; Triulzi, T.; Tuccitto, A.; Tagliabue, E.; Castelli, C.; Rivoltini, L. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin. Cancer Biol. 2017, 43, 74–89.

[38]

Cao, Z. Y.; Li, D. D.; Wang, J. X.; Yang, X. Z. Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomater. 2021, 130, 17–31.

[39]

Wang, S.; Yu, G. C.; Wang, Z. T.; Jacobson, O.; Lin, L. S.; Yang, W. J.; Deng, H. Z.; He, Z. M.; Liu, Y.; Chen, Z. Y. et al. Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angew. Chem., Int. Ed. 2019, 58, 14758–14763.

[40]

Xu, J. J.; Zheng, Q. C.; Cheng, X.; Hu, S. B.; Zhang, C.; Zhou, X.; Sun, P.; Wang, W. M.; Su, Z.; Zou, T. H. et al. Chemo-photodynamic therapy with light-triggered disassembly of theranostic nanoplatform in combination with checkpoint blockade for immunotherapy of hepatocellular carcinoma. J. Nanobiotechnol. 2021, 19, 355.

[41]

Nam, J. S.; Kang, M. G.; Kang, J.; Park, S. Y.; Lee, S. J. C.; Kim, H. T.; Seo, J. K.; Kwon, O. H.; Lim, M. H.; Rhee, H. W. et al. Endoplasmic reticulum-localized iridium(III) complexes as efficient photodynamic therapy agents via protein modifications. J. Am. Chem. Soc. 2016, 138, 10968–10977.

[42]

Zhang, Y. Y.; Tian, S. D.; Huang, L. P.; Li, Y. N.; Lu, Y.; Li, H. Y.; Chen, G. P.; Meng, F. L.; Liu, G. L.; Yang, X. L. et al. Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment. Nat. Commun. 2022, 13, 4553.

[43]

Mo, S. Y.; Zhang, X. T.; Hameed, S.; Zhou, Y. M.; Dai, Z. F. Glutathione-responsive disassembly of disulfide dicyanine for tumor imaging with reduction in background signal intensity. Theranostics 2020, 10, 2130–2140.

[44]

Ding, J. X.; Chen, J. J.; Li, D.; Xiao, C. S.; Zhang, J. C.; He, C. L.; Zhuang, X. L.; Chen, X. S. Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. J. Mater. Chem. B 2013, 1, 69–81.

[45]

Sun, F.; Zhu, Q. R.; Li, T. L.; Saeed, M.; Xu, Z. A.; Zhong, F. S.; Song, R. D.; Huai, M. X.; Zheng, M. Y.; Xie, C. et al. Regulating glucose metabolism with prodrug nanoparticles for promoting photoimmunotherapy of pancreatic cancer. Adv. Sci. 2021, 8, 2002746.

[46]

Xia, M. T.; Yan, Y.; Pu, H. Y.; Du, X. N.; Liang, J. Y.; Sun, Y. N.; Zheng, J. N.; Yuan, Y. Glutathione responsive nitric oxide release for enhanced photodynamic therapy by a porphyrinic MOF nanosystem. Chem. Eng. J. 2022, 442, 136295.

[47]

Fan, Z. J.; Liu, H. X.; Xue, Y. H.; Lin, J. Y.; Fu, Y.; Xia, Z. H.; Pan, D. M.; Zhang, J.; Qiao, K.; Zhang, Z. Z. et al. Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy. Bioact. Mater. 2021, 6, 312–325.

[48]

Noman, M. Z.; Hasmim, M.; Lequeux, A.; Xiao, M.; Duhem, C.; Chouaib, S.; Berchem, G.; Janji, B. Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment: New opportunities and challenges. Cells 2019, 8, 1083.

[49]

Thambi, T.; Park, J. H.; Lee, D. S. Hypoxia-responsive nanocarriers for cancer imaging and therapy: Recent approaches and future perspectives. Chem. Commun. 2016, 52, 8492–8500.

[50]

Im, S.; Lee, J.; Park, D.; Park, A.; Kim, Y. M.; Kim, W. J. Hypoxia-triggered transforming immunomodulator for cancer immunotherapy via photodynamically enhanced antigen presentation of dendritic cell. ACS Nano 2019, 13, 476–488.

[51]

Liu, J.; Ai, X. X.; Cabral, H.; Liu, J. L.; Huang, Y.; Mi, P. Tumor hypoxia-activated combinatorial nanomedicine triggers systemic antitumor immunity to effectively eradicate advanced breast cancer. Biomaterials 2021, 273, 120847.

[52]

Yang, H. Y.; Meng Du, J.; Jang, M. S.; Mo, X. W.; Sun, X. S.; Lee, D. S.; Lee, J. H.; Fu, Y. CD44-targeted and enzyme-responsive photo-cross-linked nanogels with enhanced stability for in vivo protein delivery. Biomacromolecules 2021, 22, 3590–3600.

[53]

Shi, Y. J.; Hu, Y.; Ochbaum, G.; Lin, R.; Bitton, R.; Cui, H. G.; Azevedo, H. S. Enzymatic activation of cell-penetrating peptides in self-assembled nanostructures triggers fibre-to-micelle morphological transition. Chem. Commun. 2017, 53, 7037–7040.

[54]

Wu, C.; Wang, C. L.; Zheng, Y. Y.; Zheng, Y. X.; Liu, Z. Q.; Xu, K. M.; Zhong, W. Y. Triple enzyme-regulated molecular hydrogels for carrier-free delivery of lonidamine. Adv. Funct. Mater. 2021, 31, 2104418.

[55]

Sun, Y. N.; Lyu, B.; Yang, C.; He, B.; Zhang, H.; Wang, X. Q.; Zhang, Q.; Dai, W. B. An enzyme-responsive and transformable PD-L1 blocking peptide-photosensitizer conjugate enables efficient photothermal immunotherapy for breast cancer. Bioact. Mater. 2023, 22, 47–59.

[56]

Sun, W.; Du, Y.; Liang, X. L.; Yu, C. Y.; Fang, J. J.; Lu, W.; Guo, X. Y.; Tian, J.; Jin, Y. H.; Zheng, J. J. Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer. Biomaterials 2019, 217, 119264.

[57]

Mu, J.; Lin, J.; Huang, P.; Chen, X. Y. Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem. Soc. Rev. 2018, 47, 5554–5573.

[58]

Wang, Y. F.; Wang, J. L.; Hao, H.; Cai, M. L.; Wang, S. Y.; Ma, J.; Li, Y.; Mao, C. B.; Zhang, S. M. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano 2016, 10, 9927–9937.

[59]

Aliabadi, H. M.; Landry, B.; Sun, C. B.; Tang, T.; Uludağ, H. Supramolecular assemblies in functional siRNA delivery: Where do we stand? Biomaterials 2012, 33, 2546–2569.

[60]

Li, X. Y.; Wenes, M.; Romero, P.; Huang, S. C. C.; Fendt, S. M.; Ho, P. C. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 425–441.

[61]

Feng, Y.; Liao, Z.; Zhang, H. X.; Xie, X. X.; You, F. M.; Liao, X. L.; Wu, C. H.; Zhang, W.; Yang, H.; Liu, Y. Y. Emerging nanomedicines strategies focused on tumor microenvironment against cancer recurrence and metastasis. Chem. Eng. J. 2023, 452, 139506.

[62]

Yang, L. F.; Achreja, A.; Yeung, T. L.; Mangala, L. S.; Jiang, D. H.; Han, C.; Baddour, J.; Marini, J. C.; Ni, J.; Nakahara, R. et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 2016, 24, 685–700.

[63]

Zhang, J.; Lin, Y. D.; Lin, Z.; Wei, Q.; Qian, J. Q.; Ruan, R. J.; Jiang, X. C.; Hou, L. X.; Song, J. B.; Ding, J. X. et al. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv. Sci. 2022, 9, 2103444.

[64]

Wang, F.; Gao, J. B.; Wang, S. H.; Jiang, J. M.; Ye, Y. C.; Ou, J. F.; Liu, S. W.; Peng, F.; Tu, Y. F. Near infrared light activation of an injectable whole-cell cancer vaccine for cancer immunoprophylaxis and immunotherapy. Biomater. Sci. 2021, 9, 3945–3953.

[65]

Shu, G.; Zhu, W.; Jiang, Y. Z.; Li, X. W.; Pan, J. B.; Zhang, X. N.; Zhang, X. J.; Sun, S. K. Persistent luminescence immune hydrogel for photodynamic-immunotherapy of tumors in vivo. Adv. Funct. Mater. 2021, 31, 2104472.

[66]

Ma, X. B.; Yang, S. C.; Zhang, T.; Wang, S.; Yang, Q. C.; Xiao, Y.; Shi, X. X.; Xue, P.; Kang, Y. J.; Liu, G. et al. Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm. Sin. B 2022, 12, 451–466.

[67]

Wang, M.; Song, J.; Zhou, F. F.; Hoover, A. R.; Murray, C.; Zhou, B. Q.; Wang, L.; Qu, J. L.; Chen, W. R. NIR-triggered phototherapy and immunotherapy via an antigen-capturing nanoplatform for metastatic cancer treatment. Adv. Sci. 2019, 6, 1802157.

[68]

Su, T.; Cheng, F. R.; Qi, J. L.; Zhang, Y.; Zhou, S. R.; Mei, L.; Fu, S. W.; Zhang, F. W.; Lin, S. B.; Zhu, G. Z. Responsive multivesicular polymeric nanovaccines that codeliver STING agonists and neoantigens for combination tumor immunotherapy. Adv. Sci. 2022, 9, 2201895.

[69]

Li, Z. W.; Rong, L. A homotypic membrane-camouflaged biomimetic nanoplatform with gold nanocrystals for synergistic photothermal/starvation/immunotherapy. ACS Appl. Mater. Interfaces 2021, 13, 23469–23480.

[70]

Zeng, Y. P.; Li, S. F.; Zhang, S. F.; Wang, L.; Yuan, H.; Hu, F. Q. Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharm. Sin. B 2022, 12, 3233–3254.

[71]

Carlino, M. S.; Larkin, J.; Long, G. V. Immune checkpoint inhibitors in melanoma. Lancet 2021, 398, 1002–1014.

[72]

Wang, Y.; Wang, Y. Y.; Ren, Y. F.; Zhang, Q.; Yi, P.; Cheng, C. M. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin. Cancer Biol. 2022, 86, 542–565.

[73]

Johnson, D. B.; Nebhan, C. A.; Moslehi, J. J.; Balko, J. M. Immune-checkpoint inhibitors: Long-term implications of toxicity. Nat. Rev. Clin. Oncol. 2022, 19, 254–267.

[74]

Fan, Q.; Chen, Z. P.; Wang, C.; Liu, Z. Toward biomaterials for enhancing immune checkpoint blockade therapy. Adv. Funct. Mater. 2018, 28, 1802540.

[75]

Lee, J.; Kim, D.; Le, Q. V.; Oh, Y. K. Nanotherapeutics for immune network modulation in tumor microenvironments. Semin. Cancer Biol. 2022, 86, 1066–1087.

[76]

Wu, C. H.; Xu, J. M.; Xie, Z. X.; Huang, H. L.; Li, N. X.; Wei, X. D.; Li, T. T.; Yang, H.; Li, S.; Qin, X. et al. Light-responsive hyaluronic acid nanomicelles co-loaded with an IDO inhibitor focus targeted photoimmunotherapy against “immune cold” cancer. Biomater. Sci. 2021, 9, 8019–8031.

[77]

Sullivan, R. J.; Weber, J. S. Immune-related toxicities of checkpoint inhibitors: Mechanisms and mitigation strategies. Nat. Rev. Drug Discov. 2022, 21, 495–508.

[78]

He, C. X.; Qu, T. Immune checkpoint inhibitor-related cutaneous adverse events. Asia Pac. J. Clin. Oncol. 2020, 16, e149–e153.

[79]

Feng, B.; Zhou, F. Y.; Hou, B.; Wang, D. G.; Wang, T. T.; Fu, Y. L.; Ma, Y. T.; Yu, H. J.; Li, Y. P. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater. 2018, 30, 1803001.

[80]

Han, X. X.; Cheng, K. M.; Xu, Y.; Wang, Y. Z.; Min, H.; Zhang, Y. L.; Zhao, X.; Zhao, R. F.; Anderson, G. J.; Ren, L. et al. Modularly designed peptide nanoprodrug augments antitumor immunity of PD-L1 checkpoint blockade by targeting indoleamine 2,3-dioxygenase. J. Am. Chem. Soc. 2020, 142, 2490–2496.

[81]

Liu, D. C.; Chen, B. L.; Mo, Y. L.; Wang, Z. H.; Qi, T.; Zhang, Q.; Wang, Y. G. Redox-activated porphyrin-based liposome remote-loaded with indoleamine 2,3-dioxygenase (IDO) inhibitor for synergistic photoimmunotherapy through induction of immunogenic cell death and blockage of IDO pathway. Nano Lett. 2019, 19, 6964–6976.

[82]

Liu, Y. J.; Lu, Y.; Zhu, X. H.; Li, C.; Yan, M. M.; Pan, J.; Ma, G. L. Tumor microenvironment-responsive prodrug nanoplatform via co-self-assembly of photothermal agent and IDO inhibitor for enhanced tumor penetration and cancer immunotherapy. Biomaterials 2020, 242, 119933.

[83]

Peng, J. R.; Yang, Q.; Xiao, Y.; Shi, K.; Liu, Q. Y.; Hao, Y.; Yang, F.; Han, R. X.; Qian, Z. Y. Tumor microenvironment responsive drug-dye-peptide nanoassembly for enhanced tumor-targeting, penetration, and photo-chemo-immunotherapy. Adv. Funct. Mater. 2019, 29, 1900004.

[84]

Salas-Benito, D.; Pérez-Gracia, J. L.; Ponz-Sarvisé, M.; Rodriguez-Ruiz, M. E.; Martínez-Forero, I.; Castañón, E.; López-Picazo, J. M.; Sanmamed, M. F.; Melero, I. Paradigms on immunotherapy combinations with chemotherapy. Cancer Discov. 2021, 11, 1353–1367.

[85]

Chen, Y. L.; Lin, H. W.; Chien, C. L.; Lai, Y. L.; Sun, W. Z.; Chen, C. A.; Cheng, W. F. BTLA blockade enhances cancer therapy by inhibiting IL-6/IL-10-induced CD19high B lymphocytes. J. ImmunoTher. Cancer 2019, 7, 313.

[86]

Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550.

[87]

Moon, E. J.; Mello, S. S.; Li, C. G.; Chi, J. T.; Thakkar, K.; Kirkland, J. G.; Lagory, E. L.; Lee, I. J.; Diep, A. N.; Miao, Y. et al. The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nat. Commun. 2021, 12, 4308.

[88]

Fu, R.; Han, C. F.; Ni, T.; Di, L.; Liu, L. J.; Lv, W. C.; Bi, Y. R.; Jiang, N.; He, Y.; Li, H. M. et al. A ZEB1/p53 signaling axis in stromal fibroblasts promotes mammary epithelial tumours. Nat. Commun. 2019, 10, 3210.

[89]

Tao, N.; Li, H. H.; Deng, L.; Zhao, S. F.; Ouyang, J.; Wen, M.; Chen, W. S.; Zeng, K.; Wei, C. W.; Liu, Y. N. A cascade nanozyme with amplified sonodynamic therapeutic effects through comodulation of hypoxia and immunosuppression against cancer. ACS Nano 2022, 16, 485–501.

[90]
Bo, Y.; Wang, H. Biomaterial-based in situ cancer vaccine. Adv. Mater., in press, https://doi.org/10.1002/adma.202210452.
[91]

Zhu, Y. F.; Yu, X. R.; Thamphiwatana, S. D.; Zheng, Y.; Pang, Z. Q. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharm. Sin. B 2020, 10, 2054–2074.

[92]

Zhao, J. Y.; Liu, Y. J.; Lin, F.; Wang, W. X.; Yang, S. J.; Ge, Y.; Chen, P. R. Bioorthogonal engineering of bacterial effectors for spatial-temporal modulation of cell signaling. ACS Cent. Sci. 2019, 5, 145–152.

[93]

Jiang, L. Q.; Zhang, M.; Bai, Y. T.; Cui, F. Y.; Zhang, C.; Wang, Z. Y.; Si, S. J.; Yang, L.; Wang, Y.; Zhang, Y. D. et al. O-carboxymethyl chitosan based pH/hypoxia-responsive micelles relieve hypoxia and induce ROS in tumor microenvironment. Carbohydr. Polym. 2022, 275, 118611.

[94]

Taleb, M.; Atabakhshi-Kashi, M.; Wang, Y. Z.; Rezvani Alanagh, H.; Farhadi Sabet, Z.; Li, F. F.; Cheng, K. M.; Li, C.; Qi, Y. Q.; Nie, G. J. et al. Bifunctional therapeutic peptide assembled nanoparticles exerting improved activities of tumor vessel normalization and immune checkpoint inhibition. Adv. Healthc. Mater. 2021, 10, 2100051.

[95]

Wan, Y. L.; Fu, L. H.; Li, C. Y.; Lin, J.; Huang, P. Conquering the hypoxia limitation for photodynamic therapy. Adv. Mater. 2021, 33, 2103978.

[96]

Huang, J.; Xiao, Z. C.; Chen, G. J.; Li, T.; Peng, Y.; Shuai, X. T. A pH-sensitive nanomedicine incorporating catalase gene and photosensitizer augments photodynamic therapy and activates antitumor immunity. Nano Today 2022, 43, 101390.

[97]

Wang, N.; Li, P.; Zhao, J.; Liu, Y. M.; Hu, X.; Ling, D. S.; Li, F. Y. An anisotropic photocatalytic agent elicits robust photoimmunotherapy through plasmonic catalysis-mediated tumor microenvironment modulation. Nano Today 2023, 50, 101827.

[98]

Guo, Z. P.; Hu, Y. Y.; Zhao, M. Y.; Hao, K.; He, P.; Tian, H. Y.; Chen, X. S.; Chen, M. W. Prodrug-based versatile nanomedicine with simultaneous physical and physiological tumor penetration for enhanced cancer chemo-immunotherapy. Nano Lett. 2021, 21, 3721–3730.

[99]

Guan, X. W.; Lin, L.; Chen, J.; Hu, Y. Y.; Sun, P. J.; Tian, H. Y.; Maruyama, A.; Chen, X. S. Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. J. Control. Release 2019, 293, 104–112.

[100]

Fraser, J. R. E.; Laurent, T. C.; Laurent, U. B. G. Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 1997, 242, 27–33.

[101]

Wang, H. R.; Han, X.; Dong, Z. L.; Xu, J.; Wang, J.; Liu, Z. Hyaluronidase with pH-responsive dextran modification as an adjuvant nanomedicine for enhanced photodynamic-immunotherapy of cancer. Adv. Funct. Mater. 2019, 29, 1902440.

[102]

Yang, C. L.; Fu, Y. Y.; Huang, C.; Hu, D. R.; Zhou, K.; Hao, Y.; Chu, B. Y.; Yang, Y.; Qian, Z. Y. Chlorin e6 and CRISPR-Cas9 dual-loading system with deep penetration for a synergistic tumoral photodynamic-immunotherapy. Biomaterials 2020, 255, 120194.

[103]

de Brito, R. V.; Mancini, M. W.; das Neves Palumbo, M.; de Moraes, L. H. O.; Rodrigues, G. J.; Cervantes, O.; Sercarz, J. A.; Paiva, M. B. The rationale for “laser-induced thermal therapy (LITT) and intratumoral cisplatin” approach for cancer treatment. Int. J. Mol. Sci. 2022, 23, 5934.

[104]

Yamagishi, K.; Kirino, I.; Takahashi, I.; Amano, H.; Takeoka, S.; Morimoto, Y.; Fujie, T. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nat. Biomed. Eng. 2019, 3, 27–36.

[105]
Hu, X.; Wang, N.; Guo, X.; Liang, Z. Y.; Sun, H.; Liao, H. W.; Xia, F.; Guan, Y. N.; Lee, J.; Ling, D. S. et al. A sub-nanostructural transformable nanozyme for tumor photocatalytic therapy. Nano-Micro Lett. 2022, 14, 101.
[106]

Li, F. Y.; Du, Y.; Liu, J. N.; Sun, H.; Wang, J.; Li, R. Q.; Kim, D.; Hyeon, T.; Ling, D. S. Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv. Mater. 2018, 30, 1802808.

[107]

Chen, T.; Su, L. C.; Ge, X. G.; Zhang, W. M.; Li, Q. Q.; Zhang, X.; Ye, J. M.; Lin, L. S.; Song, J. B.; Yang, H. H. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. 2020, 13, 3268–3277.

[108]

Xu, L.; Wang, Y. J.; Ma, Y.; Huan, S. Y.; Song, G. S. Monitoring immunotherapy with optical molecular imaging. ChemMedChem 2021, 16, 2547–2557.

[109]

Liu, Y. C.; Teng, L. L.; Lyu, Y.; Song, G. S.; Zhang, X. B.; Tan, W. H. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nat. Commun. 2022, 13, 2216.

[110]

Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

[111]

Zhao, H.; Wang, Y. Q.; Bao, L.; Chen, C. Y. Engineering nano-bio interfaces from nanomaterials to nanomedicines. Acc. Chem. Res. 2022, 3, 812–829.

[112]

Kermanizadeh, A.; Jacobsen, N. R.; Murphy, F.; Powell, L.; Parry, L.; Zhang, H. Y.; Møller, P. A review of the current state of nanomedicines for targeting and treatment of cancers: Achievements and future challenges. Adv. Ther. 2021, 4, 2000186.

Nano Research
Pages 11125-11138
Cite this article:
Shi D, Wang N, Zhang J, et al. Tumor-responsive dynamic nanoassemblies for boosted photoimmunotherapy. Nano Research, 2023, 16(8): 11125-11138. https://doi.org/10.1007/s12274-023-5844-2
Topics:

930

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 April 2023
Revised: 10 May 2023
Accepted: 11 May 2023
Published: 24 July 2023
© Tsinghua University Press 2023
Return