AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomically dispersed hierarchically ordered porous Fe-N-C single-atom nanozymes for dyes degradation

Shuangli Wu1,2Weiwei Wu1,2Xinyang Zhu1,2Minghua Li1,3Jianguo Zhao1,2Shaojun Dong1,2( )
Changchun State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
College of Chemistry, Jilin University, Changchun 130012, China
Show Author Information

Graphical Abstract

we designed and synthesized Fe-N-C single-atom nanozymes (SAzymes) with atomically dispersed FeN4 active sites anchored on a three-dimensional hierarchically ordered microporous-mesoporous-macroporous nitrogen doped carbon matrix (3DOM Fe-N-C). 3DOM Fe-N-C exhibited three kinds of enzyme-mimic activities and could be used for the degradation of a targeted environmental pollutant (rhodamine B (RhB)).

Abstract

The development of novel nanozymes for environmental contamination remediation is a worthwhile research direction. However, most of the reported nanozymes cannot degrade efficiently due to the limitation of the internal active sites not being able to come into direct contact with contaminants. Therefore, we reported Fe-N-C single-atom nanozymes (SAzymes) with atomically dispersed FeN4 active sites anchored on a three-dimensional hierarchically ordered microporous-mesoporous-macroporous nitrogen doped carbon matrix (3DOM Fe-N-C) for the degradation of a targeted environmental pollutant (rhodamine B (RhB)). The three-dimensional (3D) hierarchically ordered porous structure may accelerate mass transfer and improve the accessibility of active sites. This structure and high metal atom utilization endow Fe-N-C SAzyme with enhanced tri-enzyme-mimic activities, comprising oxidase-mimic, peroxidase-mimic, and catalase-mimic activities. Based on its excellent peroxidase-mimic activity, 3DOM Fe-N-C can degrade RhB by hydroxyl radicals (·OH) generated in the presence of hydrogen peroxide. This study provides a new idea for designing porous Fe-N-C SAzymes for environmental contamination remediation.

Electronic Supplementary Material

Download File(s)
12274_2023_5847_MOESM1_ESM.pdf (3.9 MB)

References

[1]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[2]

Sharma, T. K.; Ramanathan, R.; Weerathunge, P.; Mohammadtaheri, M.; Daima, H. K.; Shukla, R.; Bansal, V. Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun. 2014, 50, 15856–15859.

[3]

Liang, X.; Han, L. White peroxidase-mimicking nanozymes: Colorimetric pesticide assay without interferences of O2 and color. Adv. Funct. Mater. 2020, 30, 2001933.

[4]

Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

[5]

Gao, L. Z.; Yan, X. Y. Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China Life Sci. 2016, 59, 400–402.

[6]

Duan, D. M.; Fan, K. L.; Zhang, D. X.; Tan, S. G.; Liang, M. F.; Liu, Y.; Zhang, J. L.; Zhang, P. H.; Liu, W.; Qiu, X. G. et al. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 2015, 74, 134–141.

[7]

Yang, B. W.; Chen, Y.; Shi, J. L. Nanozymes in catalytic cancer theranostics. Prog. Biochem. Biophys. 2018, 45, 237–255.

[8]

Tang, Y.; Qiu, Z. Y.; Xu, Z. B.; Gao, L. Z. Antibacterial mechanism and applications of nanozymes. Prog. Biochem. Biophys. 2018, 45, 118–128.

[9]

Wu, J. J. X.; Li, S. R.; Wei, H. Integrated nanozymes: Facile preparation and biomedical applications. Chem. Commun. 2018, 54, 6520–6530.

[10]

Popov, A. L.; Popova, N. R.; Tarakina, N. V.; Ivanova, O. S.; Ermakov, A. M.; Ivanov, V. K.; Sukhorukov, G. B. Intracellular delivery of antioxidant CeO2 nanoparticles via polyelectrolyte microcapsules. ACS Biomater. Sci. Eng. 2018, 4, 2453–2462.

[11]

Jiao, L.; Wu, J. B.; Zhong, H.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Chen, Y. F.; Yan, H. Y.; Zhang, Q. H.; Gu, W. L. et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.

[12]

Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.

[13]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[14]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[15]

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

[16]

Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

[17]

Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 2018, 3, 17075.

[18]

Dutta, S.; Kumari, N.; Dubbu, S.; Jang, S. W.; Kumar, A.; Ohtsu, H.; Kim, J.; Cho, S. H.; Kawano, M.; Lee, I. S. Highly mesoporous metal-organic frameworks as synergistic multimodal catalytic platforms for divergent cascade reactions. Angew. Chem., Int. Ed. 2020, 59, 3416–3422.

[19]

Wang, J. P.; Han, G. K.; Wang, L. G.; Du, L.; Chen, G. Y.; Gao, Y. Z.; Ma, Y. L.; Du, C. Y.; Cheng, X. Q.; Zuo, P. J. et al. ZIF-8 with ferrocene encapsulated: A promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 2018, 14, 1704282.

[20]

Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 2017, 7, 1655–1663.

[21]

Xiao, F.; Xu, G. L.; Sun, C. J.; Xu, M. J.; Wen, W.; Wang, Q.; Gu, M.; Zhu, S. Q.; Li, Y. Y.; Wei, Z. D. et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 2019, 61, 60–68.

[22]

Ye, Y. F.; Cai, F.; Li, H. B.; Wu, H. H.; Wang, G. X.; Li, Y. S.; Miao, S.; Xie, S. H.; Si, R.; Wang, J. et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 2017, 38, 281–289.

[23]

Zhang, X. B.; Han, X.; Jiang, Z.; Xu, J.; Chen, L. N.; Xue, Y. K.; Nie, A. M.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. Atomically dispersed hierarchically ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-air battery. Nano Energy 2020, 71, 104547.

[24]

Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688–2694.

[25]

Guo, Y. C.; Feng, L.; Wu, C. C.; Wang, X. M.; Zhang, X. Confined pyrolysis transformation of ZIF-8 to hierarchically ordered porous Zn-N-C nanoreactor for efficient CO2 photoconversion under mild conditions. J. Catal. 2020, 390, 213–223.

[26]

Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J. L.; Luque, R.; Li, Y. W. et al. Ordered macro-microporous metal-organic framework single crystals. Science 2018, 359, 206–210.

[27]

Zhang, Z. P.; Dou, M. L.; Liu, H. J.; Dai, L. M.; Wang, F. A facile route to bimetal and nitrogen-codoped 3D porous graphitic carbon networks for efficient oxygen reduction. Small 2016, 12, 4193–4199.

[28]

Yang, J.; Zhang, R. F.; Zhao, H. Q.; Qi, H. F.; Li, J. Y.; Li, J. F.; Zhou, X. Y.; Wang, A. Q.; Fan, K. L.; Yan, X. Y. et al. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. Exploration 2022, 2, 20210267.

[29]

Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 2016, 8, 718–724.

[30]

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

[31]

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

[32]

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

[33]

Alizadeh, N.; Salimi, A.; Sham, T. K.; Bazylewski, P.; Fanchini, G.; Fathi, F.; Soleimani, F. Hierarchical Co(OH)2/FeOOH/WO3 ternary nanoflowers as a dual-function enzyme with pH-switchable peroxidase and catalase mimic activities for cancer cell detection and enhanced photodynamic therapy. Chem. Eng. J. 2021, 417, 129134.

[34]

Yang, W. N.; Li, J.; Lyu, Y.; Yan, X. H.; Yang, P.; Zuo, M. Bioinspired 3D hierarchical BSA-NiCo2O4@MnO2/C multifunctional micromotors for simultaneous spectrophotometric determination of enzyme activity and pollutant removal. J. Cleaner Prod. 2021, 309, 127294.

[35]

Ni, P. J.; Liu, S. Y.; Wang, B.; Chen, C. X.; Jiang, Y. Y.; Zhang, C. H.; Chen, J. B.; Lu, Y. Z. Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J. Hazard. Mater. 2021, 411, 125106.

Nano Research
Pages 10840-10847
Cite this article:
Wu S, Wu W, Zhu X, et al. Atomically dispersed hierarchically ordered porous Fe-N-C single-atom nanozymes for dyes degradation. Nano Research, 2023, 16(8): 10840-10847. https://doi.org/10.1007/s12274-023-5847-z
Topics:

671

Views

7

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 18 March 2023
Revised: 08 May 2023
Accepted: 19 May 2023
Published: 05 July 2023
© Tsinghua University Press 2023
Return