AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-enhancing photothermal conversion of 2D Weyl semimetal WTe2 with topological surface states for efficient solar vapor generation

Chun Du1Ziyi Yang1Anzhen Mo1Xuanming Duan1Guowei Yang2( )
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Topological surface states (TSSs) were induced in two-dimensional (2D) Weyl semimetal WTe2 for efficient photothermal conversion by phonons emission through multiple pathway

Abstract

To improve the performance of solar energy-driven water generation, two-dimensional (2D) photothermal materials requisite to be optimized by some strategies such as alloying, combination of plasmonic and defect modulation. However, the challenges faced in practical utilization are the complex preparation process and insufficient solar spectrum absorption. Herein, we propose a strategy of self-enhancing photothermal performance induced by topological surface states (TSSs). 2D WTe2 is fabricated on the mixed cellulose ester (MCE) for photothermal device. Compared to the MCE and pure water, WTe2 @MCE has an excellent photothermal evaporation rate of 1.09 kg·m−2·h−1 upon 1 sun irradiation, promoting 6.1 and 3.1 times, respectively. It can be attributed to the characteristics of 2D Weyl semimetal WTe2 with TSSs bringing about high optical absorption capacity, low thermal diffusivity, specific heat capacity, and high carrier density, which are strongly proved by experiments and calculation. More importantly, the contribution of TSSs to the enhancement of optical absorption for efficient solar water generation is revealed by the comparative experiment between 2D WTe2 with TSSs and that without TSSs. Furthermore, photothermal conversion mechanism is explored in-depth understanding that the photoexcited electrons recombinate with the holes through nonradiative mode for releasing thermal energy by phonons emission via multiple pathway. This work promotes the application of Weyl semimetal material with TSSs in solar water evaporation.

Electronic Supplementary Material

Download File(s)
12274_2023_5852_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Chen, C. J.; Kuang, Y. D.; Hu, L. B. Challenges and opportunities for solar evaporation. Joule 2019, 3, 683–718.

[2]

Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

[3]
Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.
[4]

Lu, Y.; Fan, D. Q.; Wang, Y. D.; Xu, H. L.; Lu, C. H.; Yang, X. F. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 2021, 15, 10366–10376.

[5]

Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

[6]

Xu, N.; Zhang, H. R.; Lin, Z. H.; Li, J. L.; Liu, G. L.; Li, X. Q.; Zhao, W.; Min, X. Z.; Yao, P. C.; Zhou, L. et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl. Sci. Rev. 2021, 8, nwab065.

[7]

Wu, L.; Dong, Z. C.; Cai, Z. R.; Ganapathy, T.; Fang, N. X.; Li, C. X.; Yu, C. L.; Zhang, Y.; Song, Y. L. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 2020, 11, 521.

[8]

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

[9]

Chen, X. B.; Yang, N. L.; Wang, Y. L.; He, H. Y.; Wang, J. Y.; Wan, J. W.; Jiang, H. Y.; Xu, B.; Wang, L. M.; Yu, R. B. et al. Highly efficient photothermal conversion and water transport during solar evaporation enabled by amorphous hollow multishelled nanocomposites. Adv. Mater. 2022, 34, 2107400.

[10]

Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

[11]

Xie, Z. J.; Duo, Y. H.; Lin, Z. T.; Fan, T. J.; Xing, C. Y.; Yu, L.; Wang, R. H.; Qiu, M.; Zhang, Y. P.; Zhao, Y. H. et al. The rise of 2D photothermal materials beyond graphene for clean water production. Adv. Sci. 2020, 7, 1902236.

[12]

Ma, H.; Xue, M. A. Q. Recent advances in the photothermal applications of two-dimensional nanomaterials: Photothermal therapy and beyond. J. Mater. Chem. A 2021, 9, 17569–17591.

[13]

Feng, F.; Guo, H. Y.; Li, D. Q.; Wu, C. Z.; Wu, J. C.; Zhang, W. S.; Fan, S. J.; Yang, Y. C.; Wu, X. J.; Yang, J. L. et al. Highly efficient photothermal effect by atomic-thickness confinement in two-dimensional ZrNCl nanosheets. ACS Nano 2015, 9, 1683–1691.

[14]

Xu, D. Y.; Liu, J.; Wang, Y. X.; Jian, Y. Y.; Wu, W. W.; Lv, R. C. Black phosphorus nanosheet with high thermal conversion efficiency for photodynamic/photothermal/immunotherapy. ACS Biomater. Sci. Eng. 2020, 6, 4940–4948.

[15]

Huang, Z. M.; Cui, X.; Li, S. L.; Wei, J. C.; Li, P.; Wang, Y. T.; Lee, C. S. Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics 2020, 9, 2233–2249.

[16]

Jana, M. K.; Singh, A.; Late, D. J.; Rajamathi, C. R.; Biswas, K.; Felser, C.; Waghmare, U. V.; Rao, C. N. R. A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2. J. Phys.: Condens. Matter 2015, 27, 285401.

[17]

Rano, B. R.; Syed, I. M.; Naqib, S. H. Elastic, electronic, bonding, and optical properties of WTe2 Weyl semimetal: A comparative investigation with MoTe2 from first principles. Results Phys. 2020, 19, 103639.

[18]

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation. Nanoscale 2018, 10, 2876–2886.

[19]

Tang, S. J.; Zhang, C. F.; Wong, D.; Pedramrazi, Z.; Tsai, H. Z.; Jia, C. J.; Moritz, B.; Claassen, M.; Ryu, H.; Kahn, S. et al. Quantum spin Hall state in monolayer 1T'-WTe2. Nat. Phys. 2017, 13, 683–687.

[20]

Belopolski, I.; Sanchez, D. S.; Ishida, Y.; Pan, X. C.; Yu, P.; Xu, S. Y.; Chang, G. Q.; Chang, T. R.; Zheng, H.; Alidoust, N. et al. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2. Nat. Commun. 2016, 7, 13643.

[21]

Choe, D. H.; Sung, H. J.; Chang, K. J. Understanding topological phase transition in monolayer transition metal dichalcogenides. Phys. Rev. B 2016, 93, 125109.

[22]

Li, N.; Sun, Y. B.; Sun, R.; Yang, X.; Zhang, W.; Xie, Z. K.; Liu, J. N.; Li, Y.; Li, Y.; Gong, Z. Z. et al. Topological surface state enhanced ultrafast spin dynamics of Fe/Bi2Se3 heterostructures. Phys. Rev. B 2022, 105, 144415.

[23]

He, P.; Isobe, H.; Zhu, D. P.; Hsu, C. H.; Fu, L.; Yang, H. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 2021, 12, 698.

[24]

Politano, A.; Chiarello, G.; Li, Z. L.; Fabio, V.; Wang, L.; Guo, L. W.; Chen, X. L.; Boukhvalov, D. W. Toward the effective exploitation of topological phases of matter in catalysis: Chemical reactions at the surfaces of NbAs and TaAs Weyl semimetals. Adv. Funct. Mater. 2018, 28, 1800511.

[25]

Chen, Y.; He, Y.; Xu, H. K.; Du, C.; Wu, X. J.; Yang, G. W. Superior peroxidase mimetic activity induced by topological surface states of Weyl semimetal WTe2. Nano Today 2022, 43, 101421.

[26]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[27]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[28]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[29]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[30]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[31]

Wang, Z.; Sun, J.; Wang, H. L.; Lei, Y. M.; Xie, Y.; Wang, G. F.; Zhao, Y.; Li, X. B.; Xu, H.; Yang, X. B. et al. 2H/1T' phase WS2(1−x)Te2x, alloys grown by chemical vapor deposition with tunable band structures. Appl. Surf. Sci. 2020, 504, 144371.

[32]

Jiang, Y. B.; Cao, L. Y.; Hu, X. F.; Ren, Z. K.; Zhang, C. K.; Wang, C. Simulating powder X-ray diffraction patterns of two-dimensional materials. Inorg. Chem. 2018, 57, 15123–15132.

[33]

Song, J.; Song, H. Y.; Wang, Z.; Lee, S.; Hwang, J. Y.; Lee, S. Y.; Lee, J.; Kim, D.; Lee, K. H.; Kim, Y. et al. Creation of two-dimensional layered Zintl phase by dimensional manipulation of crystal structure. Sci. Adv. 2019, 5, eaax0390.

[34]

Jiang, Y. C.; Gao, J.; Wang, L. Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. Sci. Rep. 2016, 6, 19624.

[35]

Li, J.; Cheng, S.; Liu, Z. X.; Zhang, W. F.; Chang, H. X. Centimeter-scale, large-area, few-layer 1T'-WTe2 films by chemical vapor deposition and its long-term stability in ambient condition. J. Phys. Chem. C 2018, 122, 7005–7012.

[36]

Chen, K.; Chen, Z. F.; Wan, X.; Zheng, Z. B.; Xie, F. Y.; Chen, W. J.; Gui, X. C.; Chen, H. J.; Xie, W. G.; Xu, J. B. A simple method for synthesis of high-quality millimeter-scale 1T’ transition-metal telluride and near-field nanooptical properties. Adv. Mater. 2017, 29, 1700704.

[37]

Sun, Y. F.; Fujisawa, K.; Terrones, M.; Schaak, R. E. Solution synthesis of few-layer WTe2 and MoxW1−xTe2 nanostructures. J. Mater. Chem. C 2017, 5, 11317–11323.

[38]

Zhang, Q. K.; Zhang, R. J.; Chen, J. C.; Shen, W. F.; An, C. H.; Hu, X. D.; Dong, M. L.; Liu, J.; Zhu, L. Q. Remarkable electronic and optical anisotropy of layered 1T'-WTe2 2D materials. Beilstein. J. Nanotechnol. 2019, 10, 1745–1753.

[39]

Ye, F.; Lee, J.; Hu, J.; Mao, Z. Q.; Wei, J.; Feng, P. X. L. Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions. Small 2016, 12, 5802–5808.

[40]

Chen, S. Y.; Naylor, C. H.; Goldstein, T.; Johnson, A. T. C.; Yan, J. Intrinsic phonon bands in high-quality monolayer T' molybdenum ditelluride. ACS Nano 2017, 11, 814–820.

[41]

Hou, F.; Zhang, D. W.; Sharma, P.; Singh, S.; Wu, T.; Seidel, J. Oxidation kinetics of WTe2 surfaces in different environments. ACS Appl. Electron. Mater. 2020, 2, 2196–2202.

[42]

Kim, Y.; Jhon, Y. I.; Park, J.; Kim, J. H.; Lee, S.; Jhon, Y. M. Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. Nanoscale 2016, 8, 2309–2316.

[43]

Shi, L.; Wang, Y. C.; Zhang, L. B.; Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J. Mater. Chem. A 2017, 5, 16212–16219.

[44]

Ye, M. M.; Jia, J.; Wu, Z. J.; Qian, C. X.; Chen, R.; O'Brien, P. G.; Sun, W.; Dong, Y. C.; Ozin, G. A. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 2017, 7, 1601811.

[45]

Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.

[46]

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Alloying-assisted phonon engineering of layered BiInSe3@nickel foam for efficient solar-enabled water evaporation. Nanoscale 2017, 9, 16396–16403.

[47]

Liu, H. W.; Chen, C. J.; Wen, H.; Guo, R. X.; Williams, N. A.; Wang, B. D.; Chen, F. J.; Hu, L. B. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 2018, 6, 18839–18846.

[48]

Li, Y. L.; Cui, X. X.; Zhao, M. Y.; Xu, Y. S.; Chen, L. L.; Cao, Z. J.; Yang, S. G.; Wang, Y. Facile preparation of a robust porous photothermal membrane with antibacterial activity for efficient solar-driven interfacial water evaporation. J. Mater. Chem. A 2019, 7, 704–710.

[49]

Xue, G. B.; Liu, K.; Chen, Q.; Yang, P. H.; Li, J.; Ding, T. P.; Duan, J. J.; Qi, B.; Zhou, J. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 2017, 9, 15052–15057.

[50]

Tian, W. C.; Yu, W. B.; Liu, X. H.; Wang, Y. K.; Shi, J. A review of the characteristics, synthesis, and thermodynamics of type-II Weyl semimetal WTe2. Materials 2018, 11, 1185.

[51]

Callanan, J. E.; Hope, G. A.; Weir, R. D.; Westrum, E. F. Jr. Thermodynamic properties of tungsten ditelluride (WTe2) I. The preparation and low temperature heat capacity at temperatures from 6 K to 326 K. J. Chem. Thermodyn. 1992, 24, 627–638.

[52]

Wu, D. D.; Qu, D.; Jiang, W. S.; Chen, G.; An, L.; Zhuang, C. Q.; Sun, Z. C. Self-floating nanostructured Ni-NiOx/Ni foam for solar thermal water evaporation. J. Mater. Chem. A 2019, 7, 8485–8490.

[53]

Liu, K. K.; Jiang, Q. S.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 2017, 9, 7675–7681.

[54]

Jiang, J.; Tang, F.; Pan, X. C.; Liu, H. M.; Niu, X. H.; Wang, Y. X.; Xu, D. F.; Yang, H. F.; Xie, B. P.; Song, F. Q. et al. Signature of strong spin–orbital coupling in the large nonsaturating magnetoresistance material WTe2. Phys. Rev. Lett. 2015, 115, 166601.

[55]

Das, P. K.; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B. E.; Tao, J.; Ciancio, R. et al. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2. Nat. Commun. 2016, 7, 10847.

[56]

Du, C.; Yan, B.; Lin, Z. Y.; Yang, G. W. Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn2S4 for photocatalytic hydrogen production. J. Mater. Chem. A 2020, 8, 207–217.

[57]
Ilatikhameneh, H.; Rahman, R.; Appenzeller, J.; Klimeck, G. Electrically doped WTe2 tunnel transistors. In 2015 International Conference on Simulation of Semiconductor Processes and Devices, Washington, USA, 2015, pp 270–272.
[58]

Zheng, Y. J.; Zhang, Q.; Odunmbaku, O.; Ou, Z. P.; Li, M.; Sun, K. Tuning the carrier type and density of monolayer tin selenide via organic molecular doping. J. Phys.:Condens. Matter 2022, 34, 085001.

[59]

Kauk, M.; Altosaar, M.; Raudoja, J.; Timmo, K.; Varema, T.; Danilson, M.; Grossberg, M.; Mellikov, E. The influence of doping with donor type impurities on the properties of CuInSe2. Phys. Status Solidi C 2008, 5, 609–611.

[60]

Du, C.; Yan, B.; Yang, G. W. Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation. Nano Energy 2020, 76, 105031.

[61]

Ferraro, A.; Cerza, P.; Mussi, V.; Maiolo, L.; Convertino, A.; Caputo, R. Efficient photothermal generation by nanoscale light trapping in a forest of silicon nanowires. J. Phys. Chem. C 2021, 125, 14134–14140.

[62]

Li, P.; Wen, Y.; He, X.; Zhang, Q.; Xia, C.; Yu, Z. M.; Yang, S. A.; Zhu, Z. Y.; Alshareef, H. N.; Zhang, X. X. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 2017, 8, 2150.

[63]

Popescu, A.; Pertsova, A.; Balatsky, A. V.; Woods, L. M. Optical response of MoTe2 and WTe2 Weyl semimetals: Distinguishing between bulk and surface contributions. Adv. Theor. Simul. 2020, 3, 1900247.

[64]

Wang, C. L.; Zhang, Y.; Huang, J. W.; Nie, S. M.; Liu, G. D.; Liang, A. J.; Zhang, Y. X.; Shen, B.; Liu, J.; Hu, C. et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 2016, 94, 241119.

[65]

Jia, G. Z.; Wang, P.; Zhang, Y. B.; Chang, K. Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers. Sci. Rep. 2016, 6, 25884.

Nano Research
Pages 10976-10984
Cite this article:
Du C, Yang Z, Mo A, et al. Self-enhancing photothermal conversion of 2D Weyl semimetal WTe2 with topological surface states for efficient solar vapor generation. Nano Research, 2023, 16(8): 10976-10984. https://doi.org/10.1007/s12274-023-5852-2
Topics:

1010

Views

6

Crossref

6

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 07 December 2022
Revised: 19 February 2023
Accepted: 22 May 2023
Published: 18 July 2023
© Tsinghua University Press 2023
Return