AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strengthening synergistic effects between hard carbon and soft carbon enabled by connecting precursors at molecular level towards high-performance potassium ion batteries

Hongqiang Xu1,2Boshi Cheng1Quan Du1Yuting Zhang1,2Haojie Duan1Ishioma L. Egun1Bo Yin1( )Haiyong He1( )
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
University of Chinese Academy of Sciences, Beijing 101400, China
Show Author Information

Graphical Abstract

Precursors are connected by ester bond at molecular scale, inhibiting the phase separation.

Abstract

Synergistic effects between hard carbons and soft carbons are proven to be helpful for improving the electrochemical performance of carbonaceous anode for potassium-ion batteries (PIBs). However, the phase separation of precursors limits the synergistic effects and improvement of electrochemical performance. Here, inspired by the esterification reaction, the precursors of two sorts of carbon are connected at the molecular level, which boosts the synergistic effects in hybrid carbon, resulting in excellent electrochemical kinetics and low charge/discharge voltage. Consequently, the hybrid carbon anode exhibited a high specific capacity of 121 mAh·g−1 at 3.2 A·g−1, a high-rate capability, and stable cycling performance. After 500 cycles at 1 A·g−1, the average capacity fading is only 0.078% per cycle.

Electronic Supplementary Material

Download File(s)
12274_2023_5853_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Liu, Y. C.; Chen, Y. F.; Wang, J.; Wang, W.; Ding, Z. Y.; Li, L. Y.; Zhang, Y.; Deng, Y. D.; Wu, J. W.; Chen, Y. N. Hierarchical yolk–shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2022, 15, 3178–3186.

[2]

Liu, Y. W.; Gao, C.; Dai, L.; Deng, Q. B.; Wang, L.; Luo, J. Y.; Liu, S.; Hu, N. The features and progress of electrolyte for potassium ion batteries. Small 2020, 16, 2004096.

[3]

Wang, H. H.; Artemova, A.; Yang, G.; Wang, H. S.; Zhang, L. L.; Cao, X.; Arkhipova, E.; Liu, J. L.; Huang, Y. Z.; Lin, J. Y. et al. Lotus root-like porous carbon for potassium ion battery with high stability and rate performance. J. Power Sources 2020, 466, 228303.

[4]

Liu, M. Q.; Wang, Y. H.; Wu, F.; Bai, Y.; Li, Y.; Gong, Y. T.; Feng, X.; Li, Y.; Wang, X. R.; Wu, C. Advances in carbon materials for sodium and potassium storage. Adv. Funct. Mater. 2022, 32, 2203117.

[5]

Zeng, X. Q.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

[6]

Zhu, Y. Y.; Wang, Y. H.; Wang, Y. T.; Xu, T. J.; Chang, P. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries. Carbon Energy 2022, 4, 1182–1213.

[7]

Xu, B. H.; Lu, N.; Zhang, B.; Qin, H. Z.; Cao, L.; Geng, H. B.; Ou, X. Regulating potassium ion receptivity by structure engineering in constructing carbon nano-network with optimized nitrogen species. Mater. Today Energy 2023, 31, 101223.

[8]

Lei, Y.; Zhang, S. W.; Dong, J. H.; Gao, Y. T.; Gao, C. W.; Wei, Y. J.; Qin, L.; Han, D.; Huang, D. Q.; Wei, G. D. et al. Potassium-enriched graphite for use as stable hybrid anodes in high-efficiency potassium batteries. Carbon 2023, 201, 1030–1037.

[9]

Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

[10]

Li, D. P.; Sun, Q.; Zhang, Y. M.; Dai, X. Y.; Ji, F. J.; Li, K. K.; Yuan, Q. H.; Liu, X. J.; Ci, L. Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Res. 2021, 14, 4502–4511.

[11]

Yu, K. H.; Wang, X. R.; Yang, H. Y.; Bai, Y.; Wu, C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 2021, 55, 499–508.

[12]

Yu, C. X.; Li, Y.; Ren, H. X.; Qian, J.; Wang, S.; Feng, X.; Liu, M. Q.; Bai, Y.; Wu, C. Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries. Carbon Energy 2022, 5, e220.

[13]

Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

[14]

Wang, M. Y.; Zhu, Y. Y.; Zhang, Y.; Yang, T.; Duan, J. Y.; Wang, C. Y. Cost-effective hard–soft carbon composite anodes with promising potassium ions storage performance. Electrochim. Acta 2021, 368, 137649.

[15]

Mahmood, N.; Tang, T. Y.; Hou, Y. L. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective. Adv. Energy Mater. 2016, 6, 1600374.

[16]

Wang, F. X.; Wu, X. W.; Li, C. Y.; Zhu, Y. S.; Fu, L. J.; Wu, Y. P.; Liu, X. Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ. Sci. 2016, 9, 3570–3611.

[17]

Dong, Y. M.; Yu, R. N.; Zhao, B.; Gong, Y. S.; Jia, H. R.; Ma, Z. W.; Gao, H. Z.; Tan, Z. Revival of insulating polyethylenimine by creatively carbonizing with perylene into highly crystallized carbon dots as the cathode interlayer for high-performance organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 1280–1289.

[18]

Guo, L.; Jia, S.; Diercks, C. S.; Yang, X. J.; Alshmimri, S. A.; Yaghi, O. M. Amidation, esterification, and thioesterification of a carboxyl-functionalized covalent organic framework. Angew. Chem., Int. Ed. 2020, 132, 2039–2043.

[19]

Al-AbdulRazzak, S.; Lofgren, E. A.; Jabarin, S. A. End-group determination in poly(ethylene terephthalate) by infrared spectroscopy. Polym. Int. 2002, 51, 174–182.

[20]

Shi, F. F.; Zhao, H.; Liu, G.; Ross, P. N.; Somorjai, G. A.; Komvopoulos, K. Identification of diethyl 2,5-dioxahexane dicarboxylate and polyethylene carbonate as decomposition products of ethylene carbonate based electrolytes by Fourier transform infrared spectroscopy. J. Phys. Chem. C 2014, 118, 14732–14738.

[21]

Wei, C. L.; Tan, L. W.; Zhang, Y. C.; Xi, B. J.; Xiong, S. L.; Feng, J. K. MXene/organics heterostructures enable ultrastable and high-rate lithium/sodium batteries. ACS Appl. Mater. Interfaces 2022, 14, 2979–2988.

[22]

Su, H. P.; Li, X. R.; Liu, C. W.; Shang, Y. Z.; Liu, H. L. Scalable synthesis of micrometer-sized porous silicon/carbon composites for high-stability lithium-ion battery anodes. Chem. Eng. J. 2023, 451, 138394.

[23]

Tu, J. W.; Tong, H. G.; Zeng, X. H.; Chen, S.; Wang, C. L.; Zheng, W.; Wang, H.; Chen, Q. W. Modification of porous N-doped carbon with sulfonic acid toward high-ICE/capacity anode material for potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2204991.

[24]

Niu, P.; Yang, Y.; Li, Z. Q.; Ding, G. H.; Wei, L. Z.; Yao, G.; Niu, H. L.; Min, Y. L.; Zheng, F. C.; Chen, Q. W. Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Res. 2022, 15, 8109–8117.

[25]

Ma, G. Y.; Li, C. J.; Liu, F.; Majeed, M. K.; Feng, Z. Y.; Cui, Y. H.; Yang, J.; Qian, Y. T. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018, 10, 241–248.

[26]

Dong, R. Q.; Wu, F.; Bai, Y.; Li, Q. H.; Yu, X. Q.; Li, Y.; Ni, Q.; Wu, C. Tailoring defects in hard carbon anode towards enhanced Na storage performance. Energy Mater. Adv. 2022, 2022, 9896218.

[27]

Sun, F.; Wang, H.; Qu, Z. B.; Wang, K. F.; Wang, L. J.; Gao, J. H.; Gao, J. M.; Liu, S. Q.; Lu, Y. F. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: Synergistic enhancement of adsorption and intercalation mechanisms. Adv. Energy Mater. 2021, 11, 2002981.

[28]

Smith, M.; Scudiero, L.; Espinal, J.; McEwen, J. S.; Garcia-Perez, M. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon 2016, 110, 155–171.

[29]

Yang, F.; Ma, X. Y.; Cai, W. B.; Song, P.; Xu, W. L. Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 20451–20459.

[30]

Kang, M. M.; Zhao, H. Q.; Ye, J. Q.; Song, W.; Shen, H. T.; Mi, J.; Li, Z. Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites. J. Mater. Chem. A 2019, 7, 7565–7572.

[31]

Feng, X.; Bai, Y.; Liu, M. Q.; Li, Y.; Yang, H. Y.; Wang, X. R.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089.

[32]

Chong, S. K.; Chen, Y. Z.; Zheng, Y.; Tan, Q.; Shu, C. Y.; Liu, Y. N.; Guo, Z. P. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J. Mater. Chem. A 2017, 5, 22465–22471.

[33]

Tong, H. G.; Wang, C. L.; Lu, J.; Chen, S.; Yang, K.; Huang, M. X.; Yuan, Q.; Chen, Q. W. Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage. Small 2020, 16, e2002771.

[34]

Cao, J. H.; Zhong, J.; Xu, H. J.; Li, S. Y.; Deng, H. L.; Wang, T.; Fan, L.; Wang, X. H.; Wang, L.; Zhu, J. et al. N/S co-doped carbon nanosheet bundles as high-capacity anode for potassium-ion battery. Nano Res. 2022, 15, 2040–2046.

[35]

Chen, C. J.; Wang, Z. G.; Zhang, B.; Miao, L.; Cai, J.; Peng, L. F.; Huang, Y. Y.; Jiang, J. J.; Huang, Y. H.; Zhang, L. N. et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 2017, 8, 161–168.

[36]

Ge, X. F.; Liu, S. H.; Qiao, M.; Du, Y. C.; Li, Y. F.; Bao, J. C.; Zhou, X. S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed. 2019, 58, 14578–14583.

[37]

Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

[38]

Xiao, N.; Zhang, X. Y.; Liu, C.; Wang, Y. W.; Li, H. Q.; Qiu, J. S. Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 2019, 147, 574–581.

[39]

Wu, X.; Lam, C. W. K.; Wu, N. Q.; Pang, S. S.; Xing, Z.; Zhang, W.; Ju, Z. C. Multiple templates fabrication of hierarchical porous carbon for enhanced rate capability in potassium-ion batteries. Mater. Today Energy 2019, 11, 182–191.

[40]

Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.

[41]

Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.

[42]

Yu, F.; Huang, T.; Zhang, P. P.; Tao, Y. P.; Cui, F. Z.; Xie, Q. J.; Yao, S. Z.; Wang, F. X. Design and synthesis of electrode materials with both battery-type and capacitive charge storage. Energy Storage Mater. 2019, 22, 235–255.

Nano Research
Pages 10985-10991
Cite this article:
Xu H, Cheng B, Du Q, et al. Strengthening synergistic effects between hard carbon and soft carbon enabled by connecting precursors at molecular level towards high-performance potassium ion batteries. Nano Research, 2023, 16(8): 10985-10991. https://doi.org/10.1007/s12274-023-5853-1
Topics:

1105

Views

7

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 22 February 2023
Revised: 26 April 2023
Accepted: 18 May 2023
Published: 15 July 2023
© Tsinghua University Press 2023
Return