AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexoelectricity-enhanced photovoltaic effect in trapezoid-shaped NaNbO3 nanotube array composites

Fang Yu1,2Junyuan Tian2,3Fengying Jiang1,2Yunjie Liu1,2Chaohai Li1,2Chengwei Wang2,3Zhong Lin Wang2,3,4( )Kailiang Ren1,2,3( )
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micronano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
Show Author Information

Graphical Abstract

A much improved flexoelectric coefficient and flexoelectric-enhanced photovoltaic effect are shown in trapezoid-shaped NaNbO3 nanotube array composites.

Abstract

In this work, we successfully prepared vertically aligned NaNbO3 nanotube (NN-NT) with trapezoidal shapes, in which the orthorhombic and monoclinic phases coexisted. According to the structure analysis, the NN-NT/epoxy composite film had excellent flexoelectric properties due to the lattice distortion caused by defects and irregular shape. The flexoelectric effect is the greatest in the vertical direction in the flexible NN-NT/epoxy composite film, and the flexoelectric coefficient ( μ12) is 2.77 × 10−8 C·m−1, which is approximately 5-fold higher than that of the pure epoxy film. The photovoltaic current of the NN-NT/epoxy composite film increased from 39.9 to 71.8 nA·cm−2 in the direction of spontaneous polarization when the sample was bent upward due to the flexoelectricity-enhanced photovoltaic (FPV) effect. The flexoelectric effect of the NN-NT/epoxy composite film could modulate the photovoltaic response by increasing it by 80% or reducing it to 65% of the original value. This work provides a new idea for further exploration in efficient and lossless ferroelectric memory devices.

Electronic Supplementary Material

Download File(s)
12274_2023_5854_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Shu, L. L.; Liang, R. H.; Rao, Z. G.; Fei, L. F.; Ke, S. M.; Wang, Y. Flexoelectric materials and their related applications: A focused review. J. Adv. Ceram. 2019, 8, 153–173.

[2]

Gong, Y. Y.; Chen, C.; Zhang, F. Q.; He, X.; Zeng, H. R.; Yang, Q. B.; Li, Y. X.; Yi, Z. G. Ferroelectric photovoltaic and flexo-photovoltaic effects in (1−x)(Bi0.5Na0.5)TiO3−xBiFeO3 systems under visible light. J. Am. Ceram. Soc. 2020, 103, 4363–4372.

[3]

Catalan, G.; Lubk, A.; Vlooswijk, A. H. G.; Snoeck, E.; Magen, C.; Janssens, A.; Rispens, G.; Rijnders, G.; Blank, D. H. A.; Noheda, B. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 2011, 10, 963–969.

[4]

Narvaez, J.; Vasquez-Sancho, F.; Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 2016, 538, 219–221.

[5]

Baskaran, S.; Ramachandran, N.; He, X. T.; Thiruvannamalai, S.; Lee, H. J.; Heo, H.; Chen, Q.; Fu, J. Y. Giant flexoelectricity in polyvinylidene fluoride films. Phys. Lett. A 2011, 375, 2082–2084.

[6]

Liu, K. Y.; Zhang, S. W.; Wu, T. H.; Ji, H.; Xu, M. L.; Shen, S. P. Decoupled shear flexoelectric effects in polymers. J. Appl. Phys. 2019, 125, 174104.

[7]

Zelisko, M.; Hanlumyuang, Y.; Yang, S. B.; Liu, Y. M.; Lei, C. H.; Li, J. Y.; Ajayan, P. M.; Sharma, P. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun. 2014, 5, 4284.

[8]

Brody, P. S.; Crowne, F. Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics. J. Electron. Mater. 1975, 4, 955–971.

[9]

Glass, A. M.; von der Linde, D.; Negran, T. J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phy. Lett. 1974, 25, 233–235.

[10]

Gunter, P.; Micheron, F. Photorefractive effects and photocurrents in KNbO3:Fe. Ferroelectrics 1978, 18, 27–38.

[11]

Zhou, N.; Zhao, K.; Liu, H.; Lu, Z. Q.; Zhao, H.; Tian, L.; Liu, W. W.; Zhao, S. Q. Ultrafast photovoltaic effects in miscut Nb-doped SrTiO3 single crystals. J. Appl. Phys. 2009, 105, 083110.

[12]

Yang, M. M.; Kim, D. J.; Alexe, M. Flexo-photovoltaic effect. Science 2018, 360, 904–907.

[13]

Jiang, Z. Z.; Xu, Z. Y.; Xi, Z. N.; Yang, Y. H.; Wu, M.; Li, Y. K.; Li, X.; Wang, Q. Y.; Li, C.; Wu, D. et al. Flexoelectric-induced photovoltaic effects and tunable photocurrents in flexible LaFeO3 epitaxial heterostructures. J. Mater. 2022, 8, 281–287.

[14]

Huang, Q. C.; Fan, Z.; Rao, J. J.; Yang, T. Y.; Zhang, X. M.; Chen, D. Y.; Qin, M. H.; Zeng, M.; Lu, X. B.; Zhou, G. F. et al. Significant modulation of ferroelectric photovoltaic behavior by a giant macroscopic flexoelectric effect induced by strain-relaxed epitaxy. Adv. Electron. Mater. 2021, 8, 2100612.

[15]

Shao, P. W.; Lin, M. C.; Zhuang, Q.; Huang, J. W.; Liu, S.; Chen, H. W.; Liu, H. L.; Lu, Y. J.; Hsu, Y. J.; Wu, J. M. et al. Flexo-phototronic effect in centro-symmetric BiVO4 epitaxial films. Appl. Catal. B: Environ. 2022, 312, 121367.

[16]

Chu, K.; Jang, B. K.; Sung, J. H.; Shin, Y. A.; Lee, E. S.; Song, K.; Lee, J. H.; Woo, C. S.; Kim, S. J.; Choi, S. Y. et al. Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat. Nanotechnol. 2015, 10, 972–979.

[17]

Sun, Z. H.; Wei, J.; Yang, T. T.; Li, Y. P.; Liu, Z. T.; Chen, G. G.; Wang, T. G.; Sun, H.; Cheng, Z. X. Integrating band engineering and the flexoelectric effect induced by a composition gradient for high photocurrent density in bismuth ferrite films. ACS Appl. Mater. Interfaces 2021, 13, 49850–49859.

[18]

Wu, M.; Jiang, Z. Z.; Lou, X. J.; Zhang, F.; Song, D. S.; Ning, S. C.; Guo, M. Y.; Pennycook, S. J.; Dai, J. Y.; Wen, Z. Flexoelectric thin-film photodetectors. Nano. Lett. 2021, 21, 2946–2952.

[19]

Kumar, M.; Park, J. Y.; Seo, H. Boosting self-powered ultraviolet photoresponse of TiO2-based heterostructure by flexo-phototronic effects. Adv. Opt. Mater. 2022, 10, 2102532.

[20]

Park, S. M.; Wang, B.; Das, S.; Chae, S. C.; Chung, J. S.; Yoon, J. G.; Chen, L. Q.; Yang, S. M.; Noh, T. W. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field. Nat. Nanotechnol. 2018, 13, 366–370.

[21]

Hu, X. P.; Zhou, Y.; Liu, J.; Chu, B. J. Improved flexoelectricity in PVDF/barium strontium titanate (BST) nanocomposites. J. Appl. Phys. 2018, 123, 154101.

[22]

Dong, G. H.; Li, S. Z.; Yao, M. T.; Zhou, Z. Y.; Zhang, Y. Q.; Han, X.; Luo, Z. L.; Yao, J. X.; Peng, B.; Hu, Z. Q. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 2019, 366, 475–479.

[23]

Wang, C. C.; Zhang, Y.; Zhang, B. W.; Wang, B.; Zhang, J. X.; Chen, L. Q.; Zhang, Q. M.; Wang, Z. L.; Ren, K. L. Flexophotovoltaic effect in potassium sodium niobate/poly(vinylidene fluoride-trifluoroethylene) nanocomposite. Adv. Sci. 2021, 8, 2004554.

[24]

Zhang, B. W.; Tan, D.; Cao, X. D.; Tian, J. Y.; Wang, Y. G.; Zhang, J. X.; Wang, Z. L.; Ren, K. L. Flexoelectricity-enhanced photovoltaic effect in self-polarized flexible PZT nanowire array devices. ACS Nano 2022, 16, 7834–7847.

[25]

Shu, L. L.; Ke, S. M.; Fei, L. F.; Huang, W. B.; Wang, Z. G.; Gong, J. H.; Jiang, X. N.; Wang, L.; Li, F.; Lei, S. J. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 2020, 19, 605–609.

[26]

Katsumata, K. I.; Cordonier, C. E. J.; Shichi, T.; Fujishima, A. Photocatalytic activity of NaNbO3 thin films. J. Am. Ceram. Soc. 2009, 131, 3856–3857.

[27]

Singh, S.; Khare, N. Electrically tuned photoelectrochemical properties of ferroelectric nanostructure NaNbO3 films. Appl. Phys. Lett. 2017, 110, 152902.

[28]

Fernandes, D.; Raubach, C. W.; Jardim, P. L. G.; Moreira, M. L.; Cava, S. S. Synthesis of NaNbO3 nanowires and their photocatalytic activity. Ceram. Int. 2021, 47, 10185–10188.

[29]

Singh, S.; Khare, N. Flexible PVDF/Cu/PVDF-NaNbO3 photoanode with ferroelectric properties: An efficient tuning of photoelectrochemical water splitting with electric field polarization and piezophototronic effect. Nano Energy 2017, 42, 173–180.

[30]

Wu, J. S.; Xue, D. F. In situ precursor-template route to semi-ordered NaNbO3 nanobelt arrays. Nanoscale Res. Lett. 2011, 6, 14.

[31]

Ji, S. Z.; Liu, H.; Sang, Y. H.; Liu, W.; Yu, G. W.; Leng, Y. H. Synthesis, structure, and piezoelectric properties of ferroelectric and antiferroelectric NaNbO3 nanostructures. CrystEngComm. 2014, 16, 7598–7604.

[32]

Tang, Y. L.; Zhu, Y. L.; Zou, M. J.; Wang, Y. J.; Ma, X. L. Coexisting morphotropic phase boundary and giant strain gradient in BiFeO3 films. J. Appl. Phys. 2021, 129, 184101.

[33]

Jiang, X. N.; Huang, W.; Zhang, S. J. Flexoelectric nano-generator: Materials, structures, and devices. Nano Energy 2013, 2, 1079–1092.

[34]

Ma, W. H.; Cross, L. E. Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics. Appl. Phys. Lett. 2001, 78, 2920–2921.

[35]

Ma, W. H.; Cross, L. E. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 2002, 81, 3440–3442.

[36]

Chu, B. J.; Salem, D. R. Flexoelectricity in several thermoplastic and thermosetting polymers. Appl. Phys. Lett. 2012, 101, 103905.

[37]

Clarke, L. J. Low-energy electron diffraction as a surface probe. Philos. Mag. A 2006, 43, 779–802.

[38]

Carter, C. B.; Föll, H.; Ast, D. G.; Sass, S. L. Electron diffraction and microscopy studies of the structure of grain boundaries in silicon. Philos. Mag. A 1981, 43, 441–467.

[39]

Gao, P.; Yang, S. Z.; Ishikawa, R.; Li, N.; Feng, B.; Kumamoto, A.; Shibata, N.; Yu, P.; Ikuhara, Y. Atomic-scale measurement of flexoelectric polarization at SrTiO3 dislocations. Phys. Rev. Lett. 2018, 120, 267601.

[40]

Wang, Z. G.; Li, C. C.; Zhang, Z.; Hu, Y. M.; Huang, W. B.; Ke, S. M.; Zheng, R. K.; Li, F.; Shu, L. L. Interplay of defect dipole and flexoelectricity in linear dielectrics. Scr. Mater. 2022, 210, 114427.

[41]

Höfling, M.; Zhou, X. D.; Riemer, L. M.; Bruder, E.; Liu, B. Z.; Zhou, L.; Groszewicz, P. B.; Zhuo, F. P.; Xu, B. X.; Durst, K. et al. Control of polarization in bulk ferroelectrics by mechanical dislocation imprint. Science 2021, 372, 961–964.

[42]

Lee, D.; Baek, S. H.; Kim, T. H.; Yoon, J. G.; Folkman, C. M.; Eom, C. B.; Noh, T. W. Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B 2011, 84, 125305.

[43]

Phermpornsakul, Y.; Muensit, S.; Guy, I. L. Determination of piezoelectric and pyroelectric coefficients and thermal diffusivity of 1–3 PZT/epoxy composites. IEEE Trans. Dielect. Electr. Insul. 2004, 11, 280–285.

[44]

Khanbareh, H.; van der Zwaag, S.; Groen, W. A. Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites. Smart Mater. Struct. 2014, 23, 105030.

[45]

Kim, S. R.; Choi, S. K.; Lee, H. M. Non-steady-state photovoltaic current in (Pb0.85La0.15)TiO3 and BaTiO3 ceramics. J. Mater. Res. 2000, 15, 1354–1357.

[46]

Biswas, P. P.; Chinthakuntla, T.; Duraisamy, D.; Nambi Venkatesan, G.; Venkatachalam, S.; Murugavel, P. Photovoltaic and photo-capacitance effects in ferroelectric BiFeO3 thin film. Appl. Phys. Lett. 2017, 110, 192906.

[47]

Scott, J. F.; Watanabe, K.; Hartmann, A. J.; Lamb, R. N. Device models for PZT/PT, BST/PT, SBT/PT, and SBT/BI ferroelectric memories. Ferroelectrics 1999, 225, 83–90.

[48]

Qiao, S.; Chen, M. J.; Wang, Y.; Liu, J. H.; Lu, J. F.; Li, F. T.; Fu, G. S.; Wang, S. F.; Ren, K. L.; Pan, C. F. Ultrabroadband, large sensitivity position sensitivity detector based on a Bi2Te2.7Se0.3/Si heterojunction and its performance improvement by pyro-phototronic effect. Adv. Electron. Mater. 2019, 5, 1900786.

[49]

Shiratori, Y.; Magrez, A.; Kasezawa, K.; Kato, M.; Röhrig, S.; Peter, F.; Pithan, C.; Waser, R. Noncentrosymmetric phase of submicron NaNbO3 crystallites. J. Electroceram. 2007, 19, 273–280.

[50]

Shiratori, Y.; Magrez, A.; Kato, M.; Kasezawa, K.; Pithan, C.; Waser, R. Pressure-induced phase transitions in micro-, submicro-, and nanocrystalline NaNbO3. J. Phys. Chem. C 2008, 112, 9610–9616.

[51]

Liu, W. H.; Wang, H.; Li, K. C. An aqueous solution-gel method for low temperature synthesis of nanocrystalline NaNbO3 and their ceramics. J. Sol-Gel Sci. Technol. 2010, 55, 229–234.

[52]

Paula, A. J.; Zaghete, M. A.; Longo, E.; Varela, J. A. Microwave-assisted hydrothermal synthesis of structurally and morphologically controlled sodium niobates by using niobic acid as a precursor. Eur. J. Inorg. Chem. 2008, 2008, 1300–1308.

Nano Research
Pages 11914-11924
Cite this article:
Yu F, Tian J, Jiang F, et al. Flexoelectricity-enhanced photovoltaic effect in trapezoid-shaped NaNbO3 nanotube array composites. Nano Research, 2023, 16(9): 11914-11924. https://doi.org/10.1007/s12274-023-5854-0
Topics:
Part of a topical collection:

1262

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 25 February 2023
Revised: 28 April 2023
Accepted: 19 May 2023
Published: 27 July 2023
© Tsinghua University Press 2023
Return