AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Positive direction of polarization-induced electric field improves formic acid electrooxidation on Pd

Shuozhen Hu1,§( )Yunyun Cheng1,2,§Guoming Luo1,3Kai Huang1Cheng Shi4Jie Xu5Cheng Lian1Shigang Sun6Xinsheng Zhang1( )
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
Shanghai Hydrogen Propulsion Technology Co., Ltd., Shanghai 201800, China
Shanghai Haizhiqing Energy Development Co., Ltd., Shanghai 200333, China
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

§ Shuozhen Hu and Yunyun Cheng contributed equally to this work.

Show Author Information

Graphical Abstract

Polarization-induced electric fields with different directions were successfully introduced to Pd to manipulate the adsorption energy of intermediates and reaction pathway of formic acid electrooxidation. Positive polarization-induced electric field leads to an electron-deficient state of Pd, reduced adsorption energy of COad, enhanced adsorption energy of *HCOOH and *OH, and eventually promoted formic acid electrooxidation activity.

Abstract

Adjusting the adsorption energy of adsorbates on catalyst can directly regulate the catalytic performance and reaction pathways of heterogeneous catalysis. Herein, we report a novel strategy, introducing polarization-induced electric field (PIEF) with different directions, to manipulate the adsorption energy of intermediates and reaction pathway of formic acid electrooxidation on Pd. Tourmaline nanoparticles are applied as the PIEF provider, of which the direction is successfully controlled via aligning the dipoles in tourmaline in a strong external electric field. Experimental and theoretical results systematically reveal that positive PIEF leads to an electron-deficient state of Pd, reduced adsorption energy of COad, enhanced adsorption energy of *HCOOH and *OH, and promoted formate pathway of formic acid electrooxidation. Pd/TNP+/FTO, with the aid of positive PIEF, shows three-fold enhancement in the formic acid electrooxidation (4.74 mA·cm−2) with high durability and anti-poisoning ability compared with pristine Pd. This study leads a new route to design formic acid electrocatalysts and provides an understanding on how to control the adsorption energy of adsorbates on electrocatalysts by an internal electric field.

Electronic Supplementary Material

Download File(s)
12274_2023_5857_MOESM1_ESM.pdf (2.2 MB)
12274_2023_5857_MOESM2_ESM.pdf (2.7 MB)

References

[1]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[2]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[3]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[4]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[5]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[6]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[7]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[8]

Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

[9]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[10]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[11]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[12]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[13]

Ge, Z. X.; Ding, Y.; Wang, T. J.; Shi, F.; Jin, P. J.; Chen, P.; He, B.; Yin, S. B.; Chen, Y. Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting. J. Energy Chem. 2023, 77, 209–216.

[14]

Zhang, L. L.; Ding, L. X.; Luo, Y. R.; Zeng, Y. H.; Wang, S. Q.; Wang, H. H. PdO/Pd-CeO2 hollow spheres with fresh Pd surface for enhancing formic acid oxidation. Chem. Eng. J. 2018, 347, 193–201.

[15]

Fang, Z. Y.; Zhang, Z. W.; Fereja, S. L.; Guo, J. H.; Tong, X. J.; Zheng, Y.; Liu, R. P.; Liang, X. L.; Zhang, L. T.; Li, Z. J. et al. Highly dispersed 1 nm PtPd bimetallic clusters for formic acid electrooxidation through a CO-free mechanism. J. Energy Chem. 2023, 78, 554–564.

[16]

Liang, L. C.; Li, M.; Zhang, B. T.; Liang, J. H.; Zeng, B. W.; Wang, L. M.; Tang, Y. W.; Fu, G. T.; Cui, Z. M. Ordered and isolated Pd sites endow antiperovskite-type PdFe3N with high CO-tolerance for formic acid electrooxidation. Adv. Energy Mater. 2023, 13, 202203803.

[17]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[18]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[19]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[20]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[21]

Wang, T. J.; Jiang, Y. C.; He, J. W.; Li, F. M.; Ding, Y.; Chen, P.; Chen, Y. Porous palladium phosphide nanotubes for formic acid electrooxidation. Carbon Energy 2022, 4, 283–293.

[22]

Geng, J. R.; Zhu, Z.; Ni, Y. X.; Li, H. X.; Cheng, F. Y.; Li, F. J.; Chen, J. Biaxial strained dual-phase palladium-copper bimetal boosts formic acid electrooxidation. Nano Res. 2022, 15, 280–284.

[23]

Elnabawy, A. O.; Herron, J. A.; Liang, Z. X.; Adzic, R. R.; Mavrikakis, M. Formic acid electrooxidation on Pt or Pd monolayer on transition-metal single crystals: A first-principles structure sensitivity analysis. ACS Catal. 2021, 11, 5294–5309.

[24]

Yang, L.; Li, G. Q.; Chang, J. F.; Ge, J. J.; Liu, C. P.; Vladimir, F.; Wang, G. L.; Jin, Z.; Xing, W. Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: Coefficient of lattice strain and electrochemical surface area. Appl. Catal. B: Environ. 2020, 269, 118200.

[25]

Jiang, H.; Liu, L.; Zhao, K.; Liu, Z.; Zhang, X. S.; Hu, S. Z. Effect of pyridinic- and pyrrolic-nitrogen on electrochemical performance of Pd for formic acid electrooxidation. Electrochim. Acta 2020, 337, 135758.

[26]

Zhou, Y.; Liu, D. Y.; Liu, Z.; Feng, L. G.; Yang, J. Interfacial Pd–O–Ce linkage enhancement boosting formic acid electrooxidation. ACS Appl. Mater. Interfaces 2020, 12, 47065–47075.

[27]

Liang, D.; Lian, C.; Xu, Q. C.; Liu, M. M.; Liu, H. L.; Jiang, H.; Li, C. Z. Interfacial charge polarization in Co2P2O7@N,P co-doped carbon nanocages as Mott–Schottky electrocatalysts for accelerating oxygen evolution reaction. Appl. Catal. B: Environ. 2020, 268, 118417.

[28]
Kreuzer, H. J. Chemical reactions in high electric fields. In Surface Science of Catalysis: In Situ Probes and Reaction Kinetics. Dwyer, D. J.; Hoffmann, F. M., Eds.; American Chemical Society: Washington, 1992; pp 268–286.
[29]

Welborn, V. V.; Pestana, L. R.; Head-Gordon, T. Computational optimization of electric fields for better catalysis design. Nat. Catal. 2018, 1, 649–655.

[30]

Shetty, M.; Ardagh, M. A.; Pang, Y. T.; Abdelrahman, O. A.; Dauenhauer, P. J. Electric-field-assisted modulation of surface thermochemistry. ACS Catal. 2020, 10, 12867–12880.

[31]

Léonard, N. G.; Dhaoui, R.; Chantarojsiri, T.; Yang, J. Y. Electric fields in catalysis: From enzymes to molecular catalysts. ACS Catal. 2021, 11, 10923–10932.

[32]

Yuan, J. W.; Li, H.; Wang, G.; Zhang, C.; Wang, Y. X.; Yang, L. J.; Li, M. M.; Lu, J. M. Adsorption, isolated electron/hole transport, and confined catalysis coupling to enhance the photocatalytic degradation performance. Appl. Catal. B: Environ. 2022, 303, 120892.

[33]

Han, Y.; Ma, S. R.; Ma, J.; Guiraud, P.; Guo, X. Q.; Zhang, Y. J.; Jiao, T. F. In-situ desorption of acetaminophen from the surface of graphene oxide driven by an electric field: A study by molecular dynamics simulation. Chem. Eng. J. 2021, 418, 129391.

[34]

Besalú-Sala, P.; Solà, M.; Luis, J. M.; Torrent-Sucarrat, M. Fast and simple evaluation of the catalysis and selectivity induced by external electric fields. ACS Catal. 2021, 11, 14467–14479.

[35]

Che, F. L.; Gray, J. T.; Ha, S.; McEwen, J. S. Catalytic water dehydrogenation and formation on nickel: Dual path mechanism in high electric fields. J. Catal. 2015, 332, 187–200.

[36]

Che, F. L.; Gray, J. T.; Ha, S.; Kruse, N.; Scott, S. L.; McEwen, J. S. Elucidating the roles of electric fields in catalysis: A perspective. ACS Catal. 2018, 8, 5153–5174.

[37]

Zeng, Y.; Cao, Z.; Liao, J. Z.; Liang, H. F.; Wei, B. B.; Xu, X.; Xu, H. W.; Zheng, J. X.; Zhu, W. J.; Cavallo, L. et al. Construction of hydroxide pn junction for water splitting electrocatalysis. Appl. Catal. B: Environ. 2021, 292, 120160.

[38]

Luo, G. M.; Chen, A. B.; Zhu, M. H.; Zhao, K.; Zhang, X. S.; Hu, S. Z. Improving the electrocatalytic performance of Pd for formic acid electrooxidation by introducing tourmaline. Electrochim. Acta 2020, 360, 137023.

[39]

Wang, D.; Xu, H. D.; Ma, J.; Lu, X. H.; Qi, J. Y.; Song, S. Strong promoted catalytic ozonation of atrazine at low temperature using tourmaline as catalyst: Influencing factors, reaction mechanisms and pathways. Chem. Eng. J. 2018, 354, 113–125.

[40]

Onoda, M.; Pflug, B.; Djakiew, D. Germ cell mitogenic activity is associated with nerve growth factor-like protein(s). J. Cell. Physiol. 1991, 149, 536–543.

[41]

Zhou, X. F.; Shen, B.; Zhai, J. W.; Hedin, N. Reactive oxygenated species generated on iodide-doped BiVO4/BaTiO3 heterostructures with Ag/Cu nanoparticles by coupled piezophototronic effect and plasmonic excitation. Adv. Funct. Mater. 2021, 31, 2009594.

[42]

Yim, T.; Han, S. H.; Park, N. H.; Park, M. S.; Lee, J. H.; Shin, J.; Choi, J. W.; Jung, Y.; Jo, Y. N.; Yu, J. S. et al. Effective polysulfide rejection by dipole-aligned BaTiO3 coated separator in lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 7817–7823.

[43]

Nakamura, T.; Kubo, T. Tourmaline group crystals reaction with water. Ferroelectrics 1992, 137, 13–31.

[44]

Liu, J.; Qin, Y. H.; Yuan, S.; Gao, P.; Nie, Q. Q. Investigation on the mechanism of water activated via tourmaline powder. J. Mol. Liq. 2021, 332, 115854.

[45]

Zhu, D. B.; Liang, J. S.; Ding, Y.; Xue, G.; Liu, L. H. Effect of heat treatment on far infrared emission properties of tourmaline powders modified with a rare earth. J. Am. Ceram. Soc. 2008, 91, 2588–2592.

[46]

Zhou, G. J.; Liu, H.; Chen, K. R.; Gai, X. H.; Zhao, C. C.; Liao, L. B.; Shen, K.; Fan, Z. J.; Shan, Y. The origin of pyroelectricity in tourmaline at varying temperature. J. Alloys Compd. 2018, 744, 328–336.

[47]

Li, H. D.; Sang, Y. H.; Chang, S. J.; Huang, X.; Zhang, Y.; Yang, R. S.; Jiang, H. D.; Liu, H.; Wang, Z. L. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 2015, 15, 2372–2379.

[48]

Shimizu, K.; Hojo, H.; Ikuhara, Y.; Azuma, M. Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv. Mater. 2016, 28, 8639–8644.

[49]

Wang, Y.; Wen, X. R.; Jia, Y. M.; Huang, M.; Wang, F. F.; Zhang, X. H.; Bai, Y. Y.; Yuan, G. L.; Wang, Y. J. Piezo-catalysis for nondestructive tooth whitening. Nat. Commun. 2020, 11, 1328.

[50]

He, K.; Tsega, T. T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 11903–11909.

[51]

Jiang, K.; Zhang, H. X.; Zou, S. Z.; Cai, W. B. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360–20376.

[52]

Wang, J. Y.; Zhang, H. X.; Jiang, K.; Cai, W. B. From HCOOH to CO at Pd electrodes: A surface-enhanced infrared spectroscopy study. J. Am. Chem. Soc. 2011, 133, 14876–14879.

[53]

Hu, S. Z.; Che, F. L.; Khorasani, B.; Jeon, M.; Yoon, C. W.; McEwen, J. S.; Scudiero, L.; Ha, S. Improving the electrochemical oxidation of formic acid by tuning the electronic properties of Pd-based bimetallic nanoparticles. Appl. Catal. B: Environ. 2019, 254, 685–692.

[54]

Tzeng, J. H.; Weng, C. H.; Lin, Y. H.; Huang, S. M.; Yen, L. T.; Anotai, J.; Lin, Y. T. Synthesis, characterization, and visible light induced photoactivity of tourmaline-N-TiO2 composite for photooxidation of ethylene. J. Ind. Eng. Chem. 2019, 80, 376–384.

[55]

Zhang, G. R.; Qin, X. X.; Deng, C. W.; Cai, W. B.; Jiang, K. Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalysts. Adv. Sens. Energy Mater. 2022, 1, 100007.

[56]

Cuesta, A.; Cabello, G.; Osawa, M.; Gutiérrez, C. Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal. 2012, 2, 728–738.

[57]

Elnabawy, A. O.; Herron, J. A.; Scaranto, J.; Mavrikakis, M. Structure sensitivity of formic acid electrooxidation on transition metal surfaces: A first-principles study. J. Electrochem. Soc. 2018, 165, J3109–J3121.

[58]

Sui, L. J.; An, W.; Feng, Y. H.; Wang, Z. M.; Zhou, J. W.; Hur, S. H. Bimetallic Pd-based surface alloys promote electrochemical oxidation of formic acid: Mechanism, kinetics and descriptor. J. Power Sources 2020, 451, 227830.

[59]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[60]

Zhang, S.; Xia, R.; Su, Y. Q.; Zou, Y. C.; Hu, C. Y.; Yin, G. P.; Hensen, E. J. M.; Ma, X. B.; Lin, Y. H. 2D surface induced self-assembly of Pd nanocrystals into nanostrings for enhanced formic acid electrooxidation. J. Mater. Chem. A 2020, 8, 17128–17135.

Nano Research
Pages 10848-10856
Cite this article:
Hu S, Cheng Y, Luo G, et al. Positive direction of polarization-induced electric field improves formic acid electrooxidation on Pd. Nano Research, 2023, 16(8): 10848-10856. https://doi.org/10.1007/s12274-023-5857-x
Topics:

537

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 11 April 2023
Revised: 17 May 2023
Accepted: 18 May 2023
Published: 22 June 2023
© Tsinghua University Press 2023
Return