AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pillar[6]arene-based supramolecular self-assemblies for two-pronged GSH-consumption-augmented chemo/photothermal therapy

Yang Bai1( )Xihua Li1Sijie Song2Jing Yang1Xia Liu2Zhaowei Chen2( )
Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
Show Author Information

Graphical Abstract

Here, supramolecular prodrug self-assemblies were constructed to consume glutathione through intracellular released quinone methide and light activated 1O2. In this way, the therapeutic efficacies of the released chlorambucil and photothermia were augmented toward synergistically inhibiting tumour growth.

Abstract

The abundant intracellular glutathione (GSH) in cancer cells severely undermines the therapeutic efficacy of different treatments due to their role in protecting cancer cells from the associated oxidative stress. Developing a highly integrated system to consume GSH would help to improve the therapeutic outcomes. In this study, supramolecular prodrug self-assemblies (SPSAs) with IR825 loaded inside were developed to consume GSH via two-pronged pathways while augmenting the therapeutic potency of chemo/photothermal treatment. SPSAs were prepared using water-soluble pillar[6]arene (WP[6]) as host units and H2O2-responsive nitrogen mustard prodrug, chlorambucil-(phenylboronic acid pinacol ester) conjugates (Cb-BE), as the guests. When SPSAs were internalized by cancer cells, the generation of quinone methide (QM) from Cb-BE and singlet oxygen (1O2) from irradiation-activated IR825 could consume GSH in a concerted way. As such, the therapeutic efficacies of the released chlorambucil and the accompanied hyperthermia were augmented toward synergistically inhibiting tumor growth.

Electronic Supplementary Material

Download File(s)
12274_2023_5858_MOESM1_ESM.pdf (3.6 MB)

References

[1]

Ahles, T. A.; Root, J. C. Cognitive effects of cancer and cancer treatments. Annu. Rev. Clin. Psychol. 2018, 14, 425–451.

[2]

Wang, H.; Yan, Y. Q.; Yi, Y.; Wei, Z. Y.; Chen, H.; Xu, J. F.; Wang, H.; Zhao, Y. L.; Zhang, X. Supramolecular peptide therapeutics: Host-guest interaction-assisted systemic delivery of anticancer peptides. CCS Chem. 2020, 2, 739–748.

[3]

Sun, G. P.; He, Z. M.; Hao, M.; Xu, Z. Q.; Hu, X. Y.; Zhu, J. J.; Wang, L. Y. Bifunctional supramolecular prodrug vesicles constructed from a camptothecin derivative with a water-soluble pillar[5]arene for cancer diagnosis and therapy. Chem. Commun. 2019, 55, 10892–10895.

[4]

Bai, Y.; An, N.; Chen, D.; Liu, Y. Z.; Liu, C. P.; Yao, H.; Wang, C.; Song, X.; Tian, W. Facile construction of shape-regulated β-cyclodextrin-based supramolecular self-assemblies for drug delivery. Carbohydr. Polym. 2020, 231, 115714.

[5]

Deng, Y. Y.; Song, P. Y.; Chen, X. H.; Huang, Y.; Hong, L. J.; Jin, Q.; Ji, J. 3-Bromopyruvate-conjugated nanoplatform-induced pro-death autophagy for enhanced photodynamic therapy against hypoxic tumor. ACS Nano 2020, 14, 9711–9727.

[6]

Quinn, D. I.; Sandler, H. M.; Horvath, L. G.; Goldkorn, A.; Eastham, J. A. The evolution of chemotherapy for the treatment of prostate cancer. Ann. Oncol. 2017, 28, 2658–2669.

[7]

Ferlay, J.; Shin, H. R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917.

[8]

He, Q. J.; Shi, J. L. MSN anti-cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater. 2014, 26, 391–411.

[9]

Qin, S. Y.; Zhang, A. Q.; Cheng, S. X.; Rong, L.; Zhang, X. Z. Drug self-delivery systems for cancer therapy. Biomaterials 2017, 112, 234–247.

[10]

Field, L. D.; Delehanty, J. B.; Chen, Y.; Medintz, I. L. Peptides for specifically targeting nanoparticles to cellular organelles: Quo Vadis. Acc. Chem. Res. 2015, 48, 1380–1390.

[11]

Ren, W. X.; Han, J. Y.; Uhm, S.; Jang, Y. J.; Kang, C.; Kim, J. H.; Kim, J. S. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem. Commun. 2015, 51, 10403–10418.

[12]

Liu, J. J.; Chen, Q.; Zhu, W. W.; Yi, X.; Yang, Y.; Dong, Z. L.; Liu, Z. Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: A multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Adv. Funct. Mater. 2017, 27, 1605926.

[13]

Li, F. Q.; Mei, H.; Gao, Y.; Xie, X. D.; Nie, H. F.; Li, T.; Zhang, H. J.; Jia, L. E. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials 2017, 145, 56–71.

[14]

Wu, M. X.; Gao, J.; Wang, F.; Yang, J.; Song, N.; Jin, X. Y.; Mi, P.; Tian, J.; Luo, J. Y.; Liang, F. et al. Multistimuli responsive core-shell nanoplatform constructed from Fe3O4@MOF equipped with pillar[6]arene nanovalves. Small 2018, 14, 1704440.

[15]

Sathiyajith, C.; Shaikh, R. R.; Han, Q.; Zhang, Y.; Meguellati, K.; Yang, Y. W. Biological and related applications of pillar[n]arenes. Chem. Commun. 2017, 53, 677–696.

[16]

Bai, Y.; Wu, J.; Liu, K.; Wang, X. N.; Shang, Q. Q.; Zhang, H. T. Integrated supramolecular nanovalves for photothermal augmented chemodynamic therapy through strengthened amplification of oxidative stress. J. Colloid Interface Sci. 2023, 637, 399–407.

[17]

Vidal, L.; Gurion, R.; Ram, R.; Raanani, P.; Bairey, O.; Robak, T.; Gafter-Gvili, A.; Shpilberg, O. Chlorambucil for the treatment of patients with chronic lymphocytic leukemia (CLL)-a systematic review and meta-analysis of randomized trials. Leuk. Lymphoma 2016, 57, 2047–2057.

[18]

Shao, W.; Liu, X.; Sun, G. P.; Hu, X. Y.; Zhu, J. J.; Wang, L. Y. Construction of drug-drug conjugate supramolecular nanocarriers based on water-soluble pillar[6]arene for combination chemotherapy. Chem. Commun. 2018, 54, 9462–9465.

[19]

Liu, C. F.; Li, H. X.; Li, P. X.; Liu, C. P.; Bai, Y.; Pang, J.; Wang, J. X.; Tian, W. A dual drug-based hyperbranched polymer with methotrexate and chlorambucil moieties for synergistic cancer chemotherapy. Polym. Chem. 2020, 11, 5810–5818.

[20]

Luo, C. Q.; Zhou, Y. X.; Zhou, T. J.; Xing, L.; Cui, P. F.; Sun, M. J.; Jin, L.; Lu, N.; Jiang, H. L. Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy. J. Control. Release 2018, 274, 56–68.

[21]

Li, H. P.; Yang, X.; Gao, F.; Qian, C. G.; Li, C. Z.; Oupicky, D.; Sun, M. J. Bioreduction-ruptured nanogel for switch on/off release of Bcl2 siRNA in breast tumor therapy. J. Control. Release 2018, 292, 78–90.

[22]

Dai, J.; Lin, S. D.; Cheng, D.; Zou, S. Y.; Shuai, X. T. Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew. Chem., Int. Ed. 2011, 50, 9404–9408.

[23]

Han, H. J.; Wang, H. B.; Chen, Y. J.; Li, Z. H.; Wang, Y.; Jin, Q.; Ji, J. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy. Nanoscale 2016, 8, 283–291.

[24]

Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

[25]

Bai, Y.; Shang, Q. Q.; Wu, J.; Zhang, H. T.; Liu, C. P.; Liu, K. Supramolecular self-assemblies with self-supplying H2O2 and self-consuming GSH property for amplified chemodynamic therapy. ACS Appl. Mater. Interfaces 2022, 14, 37424–37435.

[26]

Bai, Y.; Li, X. H.; Li, M. Q.; Shang, Q. Q.; Yang, J.; Fan, L.; Tian, W. Host-guest interaction-based supramolecular prodrug self-assemblies for GSH-consumption augmented chemotherapy. J. Mater. Chem. B 2022, 10, 4952–4958.

[27]

Bai, Y.; Pan, Y. J.; An, N.; Zhang, H. T.; Wang, C.; Tian, W.; Huang, T. Host-guest interactions based supramolecular complexes self-assemblies for amplified chemodynamic therapy with H2O2 elevation and GSH consumption properties. Chin. Chem. Lett. 2023, 34, 107552.

[28]

Wu, X.; Li, Y.; Lin, C.; Hu, X. Y.; Wang, L. Y. GSH- and pH-responsive drug delivery system constructed by water-soluble pillar[5]arene and lysine derivative for controllable drug release. Chem. Commun. 2015, 51, 6832–6835.

[29]

Liu, X.; Jia, K. K.; Wang, Y. C.; Shao, W.; Yao, C. H.; Peng, L. M.; Zhang, D. M.; Hu, X. Y.; Wang, L. Y. Dual-responsive bola-type supra-amphiphile constructed from water-soluble pillar[5]arene and naphthalimide-containing amphiphile for intracellular drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 4843–4850.

[30]

Cui, Y. H.; Deng, R.; Li, Z.; Du, X. S.; Jia, Q.; Wang, X. H.; Wang, C. Y.; Meguellati, K.; Yang, Y. W. Pillar[5]arene pseudo[1]rotaxane-based redox-responsive supramolecular vesicles for controlled drug release. Mater. Chem. Front. 2019, 3, 1427–1432.

[31]

Fu, S.; Li, F.; Zang, M. S.; Zhang, Z. R.; Ji, Y. C.; Yu, X. X.; Luo, Q.; Guan, S. W.; Xu, J. Y.; Liu, J. Q. Diselenium-containing ultrathin polymer nanocapsules for highly efficient targeted drug delivery and combined anticancer effect. J. Mater. Chem. B 2019, 7, 4927–4932.

[32]

Zhu, Y. C.; Chen, C.; Yang, G. L.; Wu, Q. H.; Tian, J.; Hao, E. H.; Cao, H. L.; Gao, Y.; Zhang, W. A. Inhibiting radiative transition-mediated multifunctional polymeric nanoplatforms for highly efficient tumor phototherapeutics. ACS Appl. Mater. Interfaces 2020, 12, 44523–44533.

[33]

Yin, W.; Li, J. J.; Ke, W. D.; Zha, Z.; Ge, Z. S. Integrated nanoparticles to synergistically elevate tumor oxidative stress and suppress antioxidative capability for amplified oxidation therapy. ACS Appl. Mater. Interfaces 2017, 9, 29538–29546.

[34]

Xiao, Z. M.; Zuo, W. B.; Chen, L. P.; Wu, L.; Liu, N.; Liu, J. X.; Jin, Q. Y.; Zhao, Y. L.; Zhu, X. H2O2 self-supplying and GSH-depleting nanoplatform for chemodynamic therapy synergetic photothermal/chemotherapy. ACS Appl. Mater. Interfaces 2021, 13, 43925–43936.

[35]

Liu, C. F.; Liu, C. P.; Bai, Y.; Wang, J. X.; Tian, W. Drug self-delivery systems: Molecule design, construction strategy, and biological application. Adv. Healthc. Mater. 2023, 12, 2202769.

[36]

Wu, X. D.; Zhang, Y.; Wang, Z. Q.; Wu, J. W.; Yan, R.; Guo, C. H.; Jin, Y. X. Near-infrared light-initiated upconversion nanoplatform with tumor microenvironment responsiveness for improved photodynamic therapy. ACS Appl. Bio Mater. 2020, 3, 5813–5823.

[37]

Shen, W.; Liu, W. G.; Yang, H. L.; Zhang, P.; Xiao, C. S.; Chen, X. S. A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy. Biomaterials 2018, 178, 706–719.

[38]

Nie, X.; Xia, L.; Wang, H. L.; Chen, G.; Wu, B.; Zeng, T. Y.; Hong, C. Y.; Wang, L. H.; You, Y. Z. Photothermal therapy nanomaterials boosting transformation of Fe(III) into Fe(II) in tumor cells for highly improving chemodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 31735–31742.

[39]

Liu, J. J.; Liang, H. N.; Li, M. H.; Luo, Z.; Zhang, J. X.; Guo, X. M.; Cai, K. Y. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018, 157, 107–124.

[40]

Yang, Y.; Liu, J. J.; Liang, C.; Feng, L. Z.; Fu, T. T.; Dong, Z. L.; Chao, Y.; Li, Y. G.; Lu, G.; Chen, M. W. et al. Nanoscale metal-organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 2016, 10, 2774–2781.

[41]

Zhang, Y. Y.; Teh, C.; Li, M. H.; Ang, C. Y.; Tan, S. Y.; Qu, Q. Y.; Korzh, V.; Zhao, Y. L. Acid-responsive polymeric doxorubicin prodrug nanoparticles encapsulating a near-Infrared dye for combined photothermal-chemotherapy. Chem. Mater. 2016, 28, 7039–7050.

[42]

Duan, Q. P.; Cao, Y.; Li, Y.; Hu, X. Y.; Xiao, T. X.; Lin, C.; Pan, Y.; Wang, L. Y. pH-Responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J. Am. Chem. Soc. 2013, 135, 10542–10549.

[43]

Chao, S.; Lv, X. K.; Ma, N.; Shen, Z. Y.; Zhang, F. Y.; Pei, Y. X.; Pei, Z. C. A supramolecular nanoprodrug based on a boronate ester linked curcumin complexing with water-soluble pillar[5]arene for synergistic chemotherapies. Chem. Commun. 2020, 56, 8861–8864.

[44]

Ogoshi, T.; Sueto, R.; Yoshikoshi, K.; Sakata, Y.; Akine, S.; Yamagishi, T. A. Host-guest complexation of perethylated pillar[5]arene with alkanes in the crystal state. Angew. Chem., Int. Ed. 2015, 54, 9849–9852.

[45]

Chen, C.; Zhang, Y. Q.; Chen, Z. W.; Yang, H. H.; Gu, Z. Cellular transformers for targeted therapy. Adv. Drug Deliv. Rev. 2021, 179, 114032.

[46]

Yu, G. C.; Zhou, X. Y.; Zhang, Z. B.; Han, C. Y.; Mao, Z. W.; Gao, C. Y.; Huang, F. H. Pillar[6]arene/paraquat molecular recognition in water: High binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J. Am. Chem. Soc. 2012, 134, 19489–19497.

[47]

Pan, G. Y.; Jia, H. R.; Zhu, Y. X.; Wang, R. H.; Wu, F. G.; Chen, Z. Dual channel activatable cyanine dye for mitochondrial imaging and mitochondria-targeted cancer theranostics. ACS Biomater. Sci. Eng. 2017, 3, 3596–3606.

Nano Research
Pages 9921-9929
Cite this article:
Bai Y, Li X, Song S, et al. Pillar[6]arene-based supramolecular self-assemblies for two-pronged GSH-consumption-augmented chemo/photothermal therapy. Nano Research, 2023, 16(7): 9921-9929. https://doi.org/10.1007/s12274-023-5858-9
Topics:

1450

Views

10

Crossref

10

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 12 April 2023
Revised: 19 May 2023
Accepted: 22 May 2023
Published: 26 June 2023
© Tsinghua University Press 2023
Return