Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing transition metal-nitrogen-carbon materials (M-N-C) as electrocatalysts for the oxygen evolution reaction (OER) is significant for low-cost energy conversion systems. Further d-orbital adjustment of M center in M-N-C is beneficial to the improvement of OER performance. Herein, we synthesize a single-Mn-atom catalyst based on carbon skeleton (Mn1-N2S2Cx) with isolated Mn-N2S2 sites, which exhibits high alkaline OER activity (η10 = 280 mV), low Tafel slope (44 mV·dec−1), and excellent stability. Theoretical calculations reveal the pivotal function of isolated Mn-N2S2 sites in promoting OER, including the adsorption kinetics of intermediates and activation mechanism of active sites. The doping of S causes the increase in both charge density and work function of active Mn center, and ortho-Mn1-N2S2Cx expresses the fastest OER kinetics due to the asymmetric plane.
Wang, D. W.; Li, Q.; Han, C.; Xing, Z. C.; Yang, X. R. Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B:Environ. 2019, 249, 91–97.
Meng, X. D.; Liu, X.; Fan, X. Y.; Chen, X.; Chen, S.; Meng, Y. Q.; Wang, M. Y.; Zhou, J.; Hong, S.; Zheng, L. et al. Single-atom catalyst aggregates: Size-matching is critical to electrocatalytic performance in sulfur cathodes. Adv. Sci. 2022, 9, 2103773.
Yin, P. Q.; You, B. Atom migration-trapping toward single-atom catalysts for energy electrocatalysis. Mater. Today Energy 2021, 19, 100586.
Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381.
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.
Huang, Z. F.; Song, J. J.; Dou, S.; Li, X. G.; Wang, J.; Wang, X. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 2019, 1, 1494–1518.
Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.
Zhang, F. F.; Cheng, C. Q.; Wang, J. Q.; Shang, L.; Feng, Y.; Zhang, Y.; Mao, J.; Guo, Q. J.; Xie, Y. M.; Dong, C. K. et al. W. Iridium oxide modified with silver single atom for boosting oxygen evolution reaction in acidic media. ACS Energy Lett. 2021, 6, 1588–1595.
Tian, L.; Li, Z.; Xu, X. N.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470.
Yi, D.; Lu, F.; Zhang, F. C.; Liu, S. J.; Zhou, B.; Gao, D. L.; Wang, X.; Yao, J. N. Regulating charge transfer of lattice oxygen in single-atom-doped titania for hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 15855–15859.
Zhu, Y. Z.; Peng, W. C.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 2019, 3, 1800438.
Maiti, K.; Maiti, S.; Curnan, M. T.; Kim, H. J.; Han, J. W. Engineering single atom catalysts to tune properties for electrochemical reduction and evolution reactions. Adv. Energy Mater. 2021, 11, 2101670.
Rao, P.; Wu, D. X.; Wang, T. J.; Li, J.; Deng, P. L.; Chen, Q.; Shen, Y. J.; Chen, Y.; Tian, X. L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, 2, 399–404.
Rao, P.; Wang, T. J.; Li, J.; Deng, P. L.; Shen, Y. J.; Chen, Y.; Tian, X. L. Plasma induced Fe-Nx active sites to improve the oxygen reduction reaction performance. Adv. Sensor Energy Mater. 2022, 1, 100005.
Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.
Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.
Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.
Zhao, C. X.; Liu, J. N.; Wang, J.; Wang, C. D.; Guo, X.; Li, X. Y.; Chen, X.; Song, L.; Li, B. Q.; Zhang, Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv., 2020, 8, eabn5091.
Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.
Li, L.; Chen, Y. J.; Xing, H. R.; Li, N.; Xia, J. W.; Qian, X. Y.; Xu, H.; Li, W. Z.; Yin, F. X.; He, G. Y. et al. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 2022, 15, 8056–8064.
Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.
Lin, W. J.; Lu, Y. R.; Peng, W.; Luo, M.; Chan, T. S.; Tan, Y. W. Atomic bridging modulation of Ir-N, S co-doped MXene for accelerating hydrogen evolution. J. Mater. Chem. A 2022, 10, 9878–9885.
Hwang, J.; Noh, S. H.; Han, B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552.
Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.
Gu, J. X.; Magagula, S.; Zhao, J. X.; Chen, Z. F. Boosting ORR/OER activity of graphdiyne by simple heteroatom doping. Small Methods 2019, 3, 1800550.
Wang, M. W.; Cao, L.; Du, X.; Zhang, Y.; Jin, F. B.; Zhang, M. L.; Li, Z. H.; Su, K. M. Highly dispersed Co-, N-, S-doped topological defect-rich hollow carbon nanoboxes as superior bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 2022, 14, 25427–25438.
Ruammaitree, A.; Nakahara, H.; Akimoto, K.; Soda, K.; Saito, Y. Determination of non-uniform graphene thickness on SiC(0001) by X-ray diffraction. Appl. Surf. Sci. 2013, 282, 297–301.
Seehra, M. S.; Narang, V.; Geddam, U. K.; Stefaniak, A. B. Correlation between X-ray diffraction and Raman spectra of 16 commercial grapheme-based materials and their resulting classification. Carbon 2017, 111, 380–385.
Schnegg, A.; Nehrkorn, J.; Singh, A.; Calafell, I. A.; Bonke, S. A.; Hocking, R. K.; Lips, K.; Spiccia, L. Probing the fate of Mn complexes in nafion: A combined multifrequency EPR and XAS study. J. Phys. Chem. C 2016, 120, 853–861.
Colmer, H. E.; Howcroft, A. W.; Jackson, T. A. Formation, characterization, and O–O bond activation of a peroxomanganese(III) complex supported by a cross-clamped cyclam ligand. Inorg. Chem. 2016, 55, 2055–2069.
He, M. R.; Li, X. J.; Liu, Y. H.; Li, J. F. Axial Mn–CCN bonds of cyano manganese(II) porphyrin complexes: Flexible and weak. . Inorg. Chem. 2016, 55, 5871–5879.
Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. E.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.
Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.
Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.
Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.
Zhu, X. F.; Zhang, D. T.; Chen, C. J.; Zhang, Q. R.; Liu, R. S.; Xia, Z. H.; Dai, L. M.; Amal, R.; Lu, X. Y. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020, 71, 104597.
Chen, W. M.; Luo, X. L.; Ling, S. L.; Zhou, Y. F.; Shen, B. H.; Slater, T. J. A.; Fernandes, J. A.; Lin, T. T.; Wang, J. S.; Shen, Y. Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Carbon 2020, 168, 588–596.
Jin, M. M.; Li, J. W.; Gao, J. C.; Liu, W. L.; Han, J.; Liu, H. M.; Zhan, D.; Lai, L. F. Atomic-level tungsten doping triggered low overpotential for electrocatalytic water splitting. J. Colloid Interface Sci. 2021, 587, 581–589.
Tang, C. Y.; He, D.; Zhang, N.; Song, X. Y.; Jia, S. F.; Ke, Z. J.; Liu, J. C.; Wang, J. B.; Jiang, C. Z.; Wang, Z. Y. et al. Electronic coupling of single atom and FePS3 boosts water electrolysis. Energy Environ. Mater. 2022, 5, 899–905.
Bai, X.; Duan, Z. Y.; Nan, B.; Wang, L. M.; Tang, T. M.; Guan, J. Q. Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chin. J. Catal. 2022, 43, 2240–2248.
Swierk, J. R.; Klaus, S.; Trotochaud, L.; Bell, A. T.; Tilley, T. D. Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (Oxy)hydroxide catalysts. J. Phys. Chem. C 2015, 119, 19022–19029.
Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.
Han, L. L.; Cheng, H.; Liu, W.; Li, H. Q.; Ou, P. F.; Lin, R. Q.; Wang, H. T.; Pao, C. W.; Head, A. R.; Wang, C. H. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681–688.
Bai, X.; Wang, L. M.; Nan, B.; Tang, T. M.; Niu, X. D.; Guan, J. Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025.
Guo, D.; Huang, Z.; Liu, Y. Y.; Zhang, Q.; Yang, Y. L.; Hong, J. M. Incorporation of single-atom copper into nitrogen-doped graphene for acetaminophen electrocatalytic degradation. Appl. Surf. Sci. 2022, 604, 154561.
Liu, D. W.; Srinivas, K.; Chen, X.; Ma, F.; Zhang, X. J.; Wang, X. Q.; Wang, B.; Chen, Y. F. Dual Fe, Zn single atoms anchored on carbon nanotubes inlaid N, S-doped hollow carbon polyhedrons for boosting oxygen reduction reaction. J. Colloid Interface Sci. 2022, 624, 680–690.
Lu, G. P.; Shan, H. B.; Lin, Y. M.; Zhang, K.; Zhou, B. J.; Zhong, Q.; Wang, P. C. A Fe single atom on N, S-doped carbon catalyst for performing N-alkylation of aromatic amines under solvent-free conditions. J. Mater. Chem. A 2021, 9, 25128–25135.