AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The d-orbital regulation of isolated manganese sites for enhanced oxygen evolution

Xue Bai1Jingyi Han1Xiaodi Niu2( )Jingqi Guan1( )
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, China
College of Food Science and Engineering, Jilin University, Changchun 130062, China
Show Author Information

Graphical Abstract

Through the co-coordination of nitrogen and sulfur, the d-orbital electronic structure of isolated Mn sites within the asymmetric plane is regulated and the obtained catalyst exhibits low oxygen evolution reaction (OER) energy barrier, high alkaline OER activity (η10 = 280 mV), low Tafel slope (44 mV·dec−1), and excellent stability.

Abstract

Developing transition metal-nitrogen-carbon materials (M-N-C) as electrocatalysts for the oxygen evolution reaction (OER) is significant for low-cost energy conversion systems. Further d-orbital adjustment of M center in M-N-C is beneficial to the improvement of OER performance. Herein, we synthesize a single-Mn-atom catalyst based on carbon skeleton (Mn1-N2S2Cx) with isolated Mn-N2S2 sites, which exhibits high alkaline OER activity (η10 = 280 mV), low Tafel slope (44 mV·dec−1), and excellent stability. Theoretical calculations reveal the pivotal function of isolated Mn-N2S2 sites in promoting OER, including the adsorption kinetics of intermediates and activation mechanism of active sites. The doping of S causes the increase in both charge density and work function of active Mn center, and ortho-Mn1-N2S2Cx expresses the fastest OER kinetics due to the asymmetric plane.

Electronic Supplementary Material

Download File(s)
12274_2023_5859_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Wang, D. W.; Li, Q.; Han, C.; Xing, Z. C.; Yang, X. R. Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B:Environ. 2019, 249, 91–97.

[2]

Meng, X. D.; Liu, X.; Fan, X. Y.; Chen, X.; Chen, S.; Meng, Y. Q.; Wang, M. Y.; Zhou, J.; Hong, S.; Zheng, L. et al. Single-atom catalyst aggregates: Size-matching is critical to electrocatalytic performance in sulfur cathodes. Adv. Sci. 2022, 9, 2103773.

[3]

Yin, P. Q.; You, B. Atom migration-trapping toward single-atom catalysts for energy electrocatalysis. Mater. Today Energy 2021, 19, 100586.

[4]

Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381.

[5]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[6]

Huang, Z. F.; Song, J. J.; Dou, S.; Li, X. G.; Wang, J.; Wang, X. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 2019, 1, 1494–1518.

[7]

Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.

[8]

Zhang, F. F.; Cheng, C. Q.; Wang, J. Q.; Shang, L.; Feng, Y.; Zhang, Y.; Mao, J.; Guo, Q. J.; Xie, Y. M.; Dong, C. K. et al. W. Iridium oxide modified with silver single atom for boosting oxygen evolution reaction in acidic media. ACS Energy Lett. 2021, 6, 1588–1595.

[9]

Tian, L.; Li, Z.; Xu, X. N.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470.

[10]

Yi, D.; Lu, F.; Zhang, F. C.; Liu, S. J.; Zhou, B.; Gao, D. L.; Wang, X.; Yao, J. N. Regulating charge transfer of lattice oxygen in single-atom-doped titania for hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 15855–15859.

[11]

Zhu, Y. Z.; Peng, W. C.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 2019, 3, 1800438.

[12]

Maiti, K.; Maiti, S.; Curnan, M. T.; Kim, H. J.; Han, J. W. Engineering single atom catalysts to tune properties for electrochemical reduction and evolution reactions. Adv. Energy Mater. 2021, 11, 2101670.

[13]

Rao, P.; Wu, D. X.; Wang, T. J.; Li, J.; Deng, P. L.; Chen, Q.; Shen, Y. J.; Chen, Y.; Tian, X. L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, 2, 399–404.

[14]

Rao, P.; Wang, T. J.; Li, J.; Deng, P. L.; Shen, Y. J.; Chen, Y.; Tian, X. L. Plasma induced Fe-Nx active sites to improve the oxygen reduction reaction performance. Adv. Sensor Energy Mater. 2022, 1, 100005.

[15]

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

[16]

Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.

[17]

Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

[18]
Yang, Y.; Mao, K. T.; Gao, S. Q.; Huang, H.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Wang, C. L.; Wang, H.; Chen, Q. W. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 2018, 30, 1801732.
[19]

Zhao, C. X.; Liu, J. N.; Wang, J.; Wang, C. D.; Guo, X.; Li, X. Y.; Chen, X.; Song, L.; Li, B. Q.; Zhang, Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv., 2020, 8, eabn5091.

[20]

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

[21]

Li, L.; Chen, Y. J.; Xing, H. R.; Li, N.; Xia, J. W.; Qian, X. Y.; Xu, H.; Li, W. Z.; Yin, F. X.; He, G. Y. et al. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 2022, 15, 8056–8064.

[22]

Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

[23]

Lin, W. J.; Lu, Y. R.; Peng, W.; Luo, M.; Chan, T. S.; Tan, Y. W. Atomic bridging modulation of Ir-N, S co-doped MXene for accelerating hydrogen evolution. J. Mater. Chem. A 2022, 10, 9878–9885.

[24]

Hwang, J.; Noh, S. H.; Han, B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552.

[25]

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

[26]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[27]

Gu, J. X.; Magagula, S.; Zhao, J. X.; Chen, Z. F. Boosting ORR/OER activity of graphdiyne by simple heteroatom doping. Small Methods 2019, 3, 1800550.

[28]

Wang, M. W.; Cao, L.; Du, X.; Zhang, Y.; Jin, F. B.; Zhang, M. L.; Li, Z. H.; Su, K. M. Highly dispersed Co-, N-, S-doped topological defect-rich hollow carbon nanoboxes as superior bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 2022, 14, 25427–25438.

[29]

Ruammaitree, A.; Nakahara, H.; Akimoto, K.; Soda, K.; Saito, Y. Determination of non-uniform graphene thickness on SiC(0001) by X-ray diffraction. Appl. Surf. Sci. 2013, 282, 297–301.

[30]

Seehra, M. S.; Narang, V.; Geddam, U. K.; Stefaniak, A. B. Correlation between X-ray diffraction and Raman spectra of 16 commercial grapheme-based materials and their resulting classification. Carbon 2017, 111, 380–385.

[31]

Schnegg, A.; Nehrkorn, J.; Singh, A.; Calafell, I. A.; Bonke, S. A.; Hocking, R. K.; Lips, K.; Spiccia, L. Probing the fate of Mn complexes in nafion: A combined multifrequency EPR and XAS study. J. Phys. Chem. C 2016, 120, 853–861.

[32]

Colmer, H. E.; Howcroft, A. W.; Jackson, T. A. Formation, characterization, and O–O bond activation of a peroxomanganese(III) complex supported by a cross-clamped cyclam ligand. Inorg. Chem. 2016, 55, 2055–2069.

[33]

He, M. R.; Li, X. J.; Liu, Y. H.; Li, J. F. Axial Mn–CCN bonds of cyano manganese(II) porphyrin complexes: Flexible and weak. . Inorg. Chem. 2016, 55, 5871–5879.

[34]

Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. E.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.

[35]

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

[36]

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

[37]

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

[38]

Zhu, X. F.; Zhang, D. T.; Chen, C. J.; Zhang, Q. R.; Liu, R. S.; Xia, Z. H.; Dai, L. M.; Amal, R.; Lu, X. Y. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020, 71, 104597.

[39]

Chen, W. M.; Luo, X. L.; Ling, S. L.; Zhou, Y. F.; Shen, B. H.; Slater, T. J. A.; Fernandes, J. A.; Lin, T. T.; Wang, J. S.; Shen, Y. Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Carbon 2020, 168, 588–596.

[40]

Jin, M. M.; Li, J. W.; Gao, J. C.; Liu, W. L.; Han, J.; Liu, H. M.; Zhan, D.; Lai, L. F. Atomic-level tungsten doping triggered low overpotential for electrocatalytic water splitting. J. Colloid Interface Sci. 2021, 587, 581–589.

[41]

Tang, C. Y.; He, D.; Zhang, N.; Song, X. Y.; Jia, S. F.; Ke, Z. J.; Liu, J. C.; Wang, J. B.; Jiang, C. Z.; Wang, Z. Y. et al. Electronic coupling of single atom and FePS3 boosts water electrolysis. Energy Environ. Mater. 2022, 5, 899–905.

[42]

Bai, X.; Duan, Z. Y.; Nan, B.; Wang, L. M.; Tang, T. M.; Guan, J. Q. Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chin. J. Catal. 2022, 43, 2240–2248.

[43]

Swierk, J. R.; Klaus, S.; Trotochaud, L.; Bell, A. T.; Tilley, T. D. Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (Oxy)hydroxide catalysts. J. Phys. Chem. C 2015, 119, 19022–19029.

[44]

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

[45]

Han, L. L.; Cheng, H.; Liu, W.; Li, H. Q.; Ou, P. F.; Lin, R. Q.; Wang, H. T.; Pao, C. W.; Head, A. R.; Wang, C. H. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681–688.

[46]

Bai, X.; Wang, L. M.; Nan, B.; Tang, T. M.; Niu, X. D.; Guan, J. Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025.

[47]

Guo, D.; Huang, Z.; Liu, Y. Y.; Zhang, Q.; Yang, Y. L.; Hong, J. M. Incorporation of single-atom copper into nitrogen-doped graphene for acetaminophen electrocatalytic degradation. Appl. Surf. Sci. 2022, 604, 154561.

[48]

Liu, D. W.; Srinivas, K.; Chen, X.; Ma, F.; Zhang, X. J.; Wang, X. Q.; Wang, B.; Chen, Y. F. Dual Fe, Zn single atoms anchored on carbon nanotubes inlaid N, S-doped hollow carbon polyhedrons for boosting oxygen reduction reaction. J. Colloid Interface Sci. 2022, 624, 680–690.

[49]

Lu, G. P.; Shan, H. B.; Lin, Y. M.; Zhang, K.; Zhou, B. J.; Zhong, Q.; Wang, P. C. A Fe single atom on N, S-doped carbon catalyst for performing N-alkylation of aromatic amines under solvent-free conditions. J. Mater. Chem. A 2021, 9, 25128–25135.

Nano Research
Pages 10796-10802
Cite this article:
Bai X, Han J, Niu X, et al. The d-orbital regulation of isolated manganese sites for enhanced oxygen evolution. Nano Research, 2023, 16(8): 10796-10802. https://doi.org/10.1007/s12274-023-5859-8
Topics:

864

Views

21

Crossref

19

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 14 April 2023
Revised: 05 May 2023
Accepted: 19 May 2023
Published: 05 July 2023
© Tsinghua University Press 2023
Return