AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Promoting catalysis activity with optimizable self-generated Co-Fe alloy nanoparticles for efficient CO2 electrolysis performance upgrade

Kun Zhang1,§Dong Zhang1,§Yao Wang1( )Yihang Li3Cong Ren4Mingyue Ding1( )Tong Liu2( )
Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
Interdisciplinary Research Center of Smart Sensors, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710071, China
Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China

§ Kun Zhang and Dong Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Perovskite oxide with transition metal elements such as cobalt and iron can be transformed to Ruddlesden–Popper (R-P) phase and metallic phase in the reducing atmosphere via the in-situ exsolution technique, and the in-situ exsolved metallic nano-catalysts can greatly promote the carbon dioxide reduction reaction. Moreover, the electrochemical performance can be effectively re-generated and even enhanced by re-oxidizing in air.

Abstract

Stable and flexible metal nanoparticles (NPs) with regeneration ability are critical for long-term operation of solid oxide electrolysis cells (SOECs). Herein, a novel perovskite electrode with stoichiometric Pr0.4Sr0.6Co0.125Fe0.75Mo0.125O3−δ (PSFCM) is synthesized and studied, which undergoes multiple redox cycles to validate its structural stability and NPs reversibility. The Co-Fe alloy has exsolved from the parent bulk under reducing atmosphere, and is capable of reincorporation into the parent oxide after re-oxidation treatment. During the redox process, we successfully manipulate the size and population density of the exsolved NPs, and find that the average particle size significantly reduces but the population density increases correspondingly. The electrode polarization resistance of the symmetric cell remains stable for 450 h, and even activates after the redox cycling, which may be attributed to the higher quantity and larger specific surface area of the regenerated Co-Fe alloy NPs. Moreover, the electrochemical performance towards carbon dioxide reduction reaction (CO2RR) is evaluated, and the CO2 electrolyzer consisting of CoFe@PSCFM-Ce0.8Sm0.2O1.9 (SDC) dual-phase electrode exhibits an excellent current density of 1.42 A·cm−2 at 1.6 V, which reaches 1.7 times higher than 0.83 A·cm−2 for the pristine PSCFM electrode. Overall, with this flexible and reversible high-performance SOEC cathode material, new options and perspectives are provided for the efficient and durable CO2 electrolysis.

Electronic Supplementary Material

Download File(s)
12274_2023_5860_MOESM1_ESM.pdf (728.8 KB)

References

[1]

Song, Y. F.; Zhang, X. M.; Xie, K.; Wang, G. X.; Bao, X. H. High-temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects. Adv. Mater. 2019, 31, 1902033.

[2]

Zheng, Y.; Wang, J. C.; Yu, B.; Zhang, W. Q.; Chen, J.; Qiao, J. L.; Zhang, J. J. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology. Chem. Soc. Rev. 2017, 46, 1427–1463.

[3]

Tian, Y. F.; Abhishek, N.; Yang, C. C.; Yang, R.; Choi, S.; Chi, B.; Pu, J.; Ling, Y. H.; Irvine, J. T. S.; Kim, G. Progress and potential for symmetrical solid oxide electrolysis cells. Matter 2022, 5, 482–514.

[4]

Jiang, Y. N.; Chen, F. L.; Xia, C. R. A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. J. Power Sources 2021, 493, 229713.

[5]

Carneiro, J.; Nikolla, E. Nanoengineering of solid oxide electrochemical cell technologies: An outlook. Nano Res. 2019, 12, 2081–2092.

[6]

Graves, C.; Ebbesen, S. D.; Jensen, S. H.; Simonsen, S. B.; Mogensen, M. B. Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nat. Mater. 2015, 14, 239–244.

[7]

Pei, K.; Zhou, Y. C.; Xu, K.; Zhang, H.; Ding, Y.; Zhao, B. T.; Yuan, W.; Sasaki, K.; Choi, Y.; Chen, Y. et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nat. Commun. 2022, 13, 2207.

[8]

Lai, K. Y.; Manthiram, A. Self-regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells. Chem. Mater. 2018, 30, 2515–2525.

[9]

Lv, H. F.; Lin, L.; Zhang, X. M.; Li, R. T.; Song, Y. F.; Matsumoto, H.; Ta, N.; Zeng, C. B.; Fu, Q.; Wang, G. X. et al. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6-δ via repeated redox manipulations for CO2 electrolysis. Nat. Commun. 2021, 12, 5665.

[10]

Marcucci, A.; Zurlo, F.; Sora, I. N.; Placidi, E.; Casciardi, S.; Licoccia, S.; Di Bartolomeo, E. A redox stable Pd-doped perovskite for SOFC applications. J. Mater. Chem. A 2019, 7, 5344–5352.

[11]
Lv, H. F.; Lin, L.; Zhang, X. M.; Song, Y. F.; Li, R. T.; Li, J. W.; Matsumoto, H.; Ta, N.; Zeng, C. B.; Gong, H. M. et al. Redox-manipulated RhOx nanoclusters uniformly anchored on Sr2Fe1.45Rh0.05Mo0.5O6−δ perovskite for CO2 electrolysis. Fundam. Res., in press, http://doi.org/10.1016/j.fmre.2022.07.010.
[12]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[13]

Kasyanova, A. V.; Zvonareva, I. A.; Tarasova, N. A.; Bi, L.; Medvedev, D. A.; Shao, Z. P. Electrolyte materials for protonic ceramic electrochemical cells: Main limitations and potential solutions. Mater. Rep. Energy 2022, 2, 100158.

[14]

Chen, K. F.; Jiang, S. P. Review—Materials degradation of solid oxide electrolysis cells. J. Electrochem. Soc. 2016, 163, F3070–F3083.

[15]

Liu, Q.; Dong, X. H.; Xiao, G. L.; Zhao, F.; Chen, F. L. A novel electrode material for symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482.

[16]

Markov, A. A.; Leonidov, I. A.; Patrakeev, M. V.; Kozhevnikov, V. L.; Savinskaya, O. A.; Ancharova, U. V.; Nemudry, A. P. Structural stability and electrical transport in SrFe1−xMoxO3−δ. Solid State Ionics 2008, 179, 1050–1053.

[17]

Zhang, S. W.; Jiang, Y. N.; Han, H. R.; Li, Y. H.; Xia, C. R. Perovskite oxyfluoride ceramic with in situ exsolved Ni-Fe nanoparticles for direct CO2 electrolysis in solid oxide electrolysis cells. ACS Appl. Mater. Interfaces 2022, 14, 28854–28864.

[18]

Xi, X. A.; Liu, X. Y.; Huang, L. G.; Liu, J. W.; Zhang, B. W.; Rothenberg, G.; Fu, X. Z.; Luo, J. L. Unraveling the relationship between Sr stoichiometry in SrxFe1.5Mo0.5O6-σ and its catalytic performance for high-temperature CO2 electrolysis. Mater. Rep. Energy 2023, 3, 100179.

[19]

Lv, J. W.; Sun, W.; Xu, C. M.; Yang, X. X.; Ma, M. J.; Zhang, L. H.; Zhang, S. X.; Qiao, J. S.; Zhen, S. Y.; Sun, K. N. Enhancing the catalytic activity and CO2 chemisorption ability of the perovskite cathode for soild oxide electrolysis cell through in situ Fe-Sn alloy nanoparticles. Sep. Purif. Technol. 2022, 294, 121127.

[20]

Zhang, L. H.; Sun, W.; Xu, C. M.; Ren, R. Z.; Yang, X. X.; Qiao, J. S.; Wang, Z. H.; Zhen, S. Y.; Sun, K. N. Two-fold improvement in chemical adsorption ability to achieve effective carbon dioxide electrolysis. Appl. Catal. B Environ. 2022, 317, 121754.

[21]

Zhang, D.; Yang, W. Q.; Wang, Z. B.; Ren, C.; Wang, Y.; Ding, M. Y.; Liu, T. Efficient electrochemical CO2 reduction reaction on a robust perovskite type cathode with in-situ exsolved Fe-Ru alloy nanocatalysts. Sep. Purif. Technol. 2023, 304, 122287.

[22]

Wu, M.; Cai, H. D.; Jin, F. J.; Sun, N.; Xu, J. S.; Zhang, L. L.; Han, X.; Wang, S. B.; Su, X. G.; Long, W. et al. Assessment of cobalt-free ferrite-based perovskite Ln0.5Sr0.5Fe0.9Mo0.1O3−δ (Ln = lanthanide) as cathodes for IT-SOFCs. J. Eur. Ceram. Soc. 2021, 41, 2682–2690.

[23]

Zhang, K.; Zhao, Y. Q.; He, W.; Zhao, P. C.; Zhang, D.; He, T.; Wang, Y.; Liu, T. Pr and Mo co-doped SrFeO3−δ as an efficient cathode for pure CO2 reduction reaction in a solid oxide electrolysis cell. Energy Technol. 2020, 8, 2000539.

[24]

Lv, H. F.; Lin, L.; Zhang, X. M.; Song, Y. F.; Matsumoto, H.; Zeng, C. B.; Ta, N.; Liu, W.; Gao, D. F.; Wang, G. X. et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5 Mo0.5O6−δ cathode for CO2 electrolysis. Adv. Mater 2020, 32, 1906193.

[25]

He, F.; Hou, M. Y.; Zhu, F.; Liu, D. L.; Zhang, H.; Yu, F. F.; Zhou, Y. C.; Ding, Y.; Liu, M. L.; Chen, Y. Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical CO2 reduction. Adv. Energy Mater. 2022, 12, 2202175.

[26]

Tan, T.; Wang, Z. M.; Qin, M. X.; Zhong, W. T.; Hu, J. H.; Yang, C. H.; Liu, M. L. In situ exsolution of core-shell structured NiFe/FeOx nanoparticles on Pr0.4Sr1.6(NiFe)1.5Mo0.5O6−δ for CO2 electrolysis. Adv. Funct. Mater. 2022, 32, 2202878.

[27]

Yang, X. X.; Sun, W.; Ma, M. J.; Xu, C. M.; Ren, R. Z.; Qiao, J. S.; Wang, Z. H.; Li, Z. S.; Zhen, S. Y.; Sun, K. N. Achieving highly efficient carbon dioxide electrolysis by in situ construction of the heterostructure. ACS Appl. Mater. Interfaces 2021, 13, 20060–20069.

[28]

Li, Y. H.; Li, Y. P.; Zhang, S. W.; Ren, C.; Jing, Y. F.; Cheng, F. P.; Wu, Q. X.; Lund, P.; Fan, L. D. Mutual conversion of CO-CO2 on a perovskite fuel electrode with endogenous alloy nanoparticles for reversible solid oxide cells. ACS Appl. Mater. Interfaces 2022, 14, 9138–9150.

[29]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[30]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[31]

Zhang, D.; Zhang, K.; He, T.; Yu, N.; Zhao, Y. Q.; Wang, Y.; Liu, T. Preparation and characterization of a redox-stable Pr0.4Sr0.6Fe0.875Mo0.125O3−δ material as a novel symmetrical electrode for solid oxide cell application. Int. J. Hydrogen Energy 2020, 45, 21825–21835.

[32]

Zhang, D.; Wang, Y.; Peng, Y. H.; Luo, Y.; Liu, T.; He, W.; Chen, F. L.; Ding, M. Y. Novel high-entropy perovskite-type symmetrical electrode for efficient and durable carbon dioxide reduction reaction. Adv. Powder Mater. 2023, 2, 100129.

[33]

Xi, X. A.; Wang, X. W.; Fan, Y.; Wang, Q.; Lu, Y.; Li, J.; Shao, L.; Luo, J. L.; Fu, X. Z. Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles. J. Power Sources 2021, 482, 228981.

[34]

Qiu, P.; Yang, X.; Wang, W. H.; Wei, T.; Lu, Y. Y.; Lin, J.; Yuan, Z. H.; Jia, L. C.; Li, J.; Chen, F. L. Redox-reversible electrode material for direct hydrocarbon solid oxide fuel cells. ACS Appl. Mater. Interfaces 2020, 12, 13988–13995.

[35]

Jo, S.; Jeong, H. G.; Kim, Y. H.; Neagu, D.; Myung, J. H. Stability and activity controls of Cu nanoparticles for high-performance solid oxide fuel cells. Appl. Catal. B Environ. 2021, 285, 119828.

[36]

Wu, Y. J.; Wang, S.; Gao, Y.; Yu, X.; Jiang, H. T.; Wei, B.; Lü, Z. In situ growth of copper-iron bimetallic nanoparticles in A-site deficient Sr2Fe1.5Mo0.5O6−δ as an active anode material for solid oxide fuel cells. J. Alloys Compd. 2022, 926, 166852.

[37]

Hauch, A.; Hagen, A.; Hjelm, J.; Ramos, T. Sulfur poisoning of SOFC anodes: Effect of overpotential on long-term degradation. J. Electrochem. Soc. 2014, 161, F734–F743.

[38]

Liu, T.; Liu, H.; Zhang, X. Y.; Lei, L. B.; Zhang, Y. X.; Yuan, Z. H.; Chen, F. L.; Wang, Y. A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and steam. J. Mater. Chem. A 2019, 7, 13550–13558.

[39]

Liu, Z. Q.; Tang, Z. J.; Song, Y. F.; Yang, G. M.; Qian, W. R.; Yang, M. T.; Zhu, Y. L.; Ran, R.; Wang, W.; Zhou, W. et al. High-entropy perovskite oxide: A new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells. Nano-Micro Lett. 2022, 14, 217.

[40]

Liang, M. Z.; Zhu, Y. J.; Song, Y. F.; Guan, D. Q.; Luo, Z. X.; Yang, G. M.; Jiang, S. P.; Zhou, W.; Ran, R.; Shao, Z. P. A new durable surface nanoparticles-modified perovskite cathode for Protonic ceramic fuel cells from selective cation exsolution under oxidizing atmosphere. Adv. Mater. 2022, 34, e2106379.

[41]

Yu, N.; Jiang, G.; Liu, T.; Chen, X.; Miao, M. Y.; Zhang, Y. X.; Wang, Y. Understanding the A-site non-stoichiometry in perovskites: Promotion of exsolution of metallic nanoparticles and the hydrogen oxidation reaction in solid oxide fuel cells. Sustainable Energy Fuels 2021, 5, 401–411.

[42]

Zhang, X. Y.; Tong, Y. W.; Liu, T.; Zhang, D.; Yu, N.; Zhou, J.; Li, Y. Q.; Gu, X. K.; Wang, Y. Robust ruddlesden-popper phase Sr3Fe1.3Mo0.5Ni0.2O7−δ decorated with in-situ exsolved Ni nanoparticles as an efficient anode for hydrocarbon fueled solid oxide fuel cells. SusMat 2022, 2, 487–501.

[43]

Lv, H. F.; Lin, L.; Zhang, X. M.; Gao, D. F.; Song, Y. F.; Zhou, Y. J.; Liu, Q. X.; Wang, G. X.; Bao, X. H. In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1. 5Mo0.5O6−δ perovskite for efficient electrochemical CO2 reduction reaction. J. Mater. Chem. A 2019, 7, 11967–11975.

[44]

Meng, X. Y.; Wang, Y.; Zhao, Y. Q.; Zhang, T. H.; Yu, N.; Chen, X.; Miao, M. Y.; Liu, T. In-situ exsolution of nanoparticles from Ni substituted Sr2Fe1.5Mo0.5O6 perovskite oxides with different Ni doping contents. Electrochim. Acta 2020, 348, 136351.

[45]

Feng, W. C.; Song, Y. F.; Zhang, X. M.; Lv, H. F.; Liu, Q. X.; Wang, G. X.; Bao, X. H. Platinum-decorated ceria enhances CO2 electroreduction in solid oxide electrolysis cells. ChemSusChem 2020, 13, 6290–6295.

[46]

Wang, X. Q.; Zhang, S. M.; Yang, R.; Bai, S. C.; Li, J. B.; Wu, Y.; Jin, B. W.; Jin, X.; Shao, M. F.; Wang, B. Hierarchical carbon nanosheet confined defective MoSx cathode towards long-cycling zinc-ion-battery. Nano Res. 2023, 16, 9364–9370.

Nano Research
Pages 10992-10999
Cite this article:
Zhang K, Zhang D, Wang Y, et al. Promoting catalysis activity with optimizable self-generated Co-Fe alloy nanoparticles for efficient CO2 electrolysis performance upgrade. Nano Research, 2023, 16(8): 10992-10999. https://doi.org/10.1007/s12274-023-5860-2
Topics:

1411

Views

15

Crossref

14

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 03 April 2023
Revised: 10 May 2023
Accepted: 21 May 2023
Published: 12 July 2023
© Tsinghua University Press 2023
Return