Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The slot-die coating is recognized as the most compatible method for the roll-to-roll (R2R) processing of large-area flexible organic solar cells (OSCs). However, the photovoltaic performance of the large-area flexible all-polymer solar cells was significantly lagging behind that of polymer donors with small molecule non-fullerene acceptors devices. In this work, the 1 cm2 flexible device of an all-polymer system, PTQ10:PYF-T-o, fabricated by slot-die coating, achieves an excellent efficiency of 11.24% via controlling the coating temperatures. It is found that, compared with the donor, the crystallinity of PYF-T-o plays a crucial role in device performance. The all-polymer flexible devices show superior mechanical bending stability, maintaining an efficiency of over 95% of the initial value during a 1000-cycle bending test.
Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: Recent progress, challenges, and prospects. Angew. Chem., Int. Ed. 2019, 58, 4129–4142.
Zhang, C.; Ming, S. L.; Wu, H. B.; Wang, X. D.; Huang, H.; Xue, W. Y.; Xu, X. J.; Tang, Z.; Ma, W.; Bo, Z. S. High-efficiency ternary nonfullerene organic solar cells with record long-term thermal stability. J. Mater. Chem. A 2020, 8, 22907–22917.
Qi, Q. C.; Xian, K. H.; Ke, H. Z.; Wu, J. J.; Zhou, K. K.; Gao, M. Y.; Liu, J. W.; Li, S. M.; Zhao, W. C.; Chen, Z. et al. Improving the thermal stability of organic solar cells via crystallinity control. ACS Appl. Energy Mater. 2022, 5, 15656–15665.
Lee, J. W.; Sun, C.; Ma, B. S.; Kim, H. J.; Wang, C.; Ryu, J. M.; Lim, C.; Kim, T. S.; Kim, Y. H.; Kwon, S. K. et al. Efficient, thermally stable, and mechanically robust all-polymer solar cells consisting of the same benzodithiophene unit-based polymer acceptor and donor with high molecular compatibility. Adv. Energy Mater. 2021, 11, 2003367.
Zhou, D.; Wang, J. R.; Xu, Z. T.; Xu, H. T.; Quan, J. W.; Deng, J. W.; Li, Y. B.; Tong, Y. F.; Hu, B.; Chen, L. Recent advances of nonfullerene acceptors in organic solar cells. Nano Energy 2022, 103, 107802.
Wang, J. Y.; Xue, P. Y.; Jiang, Y. T.; Huo, Y.; Zhan, X. W. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 2022, 6, 614–634.
Wang, J. Y.; Zhan, X. W. From perylene diimide polymers to fused-ring electron acceptors: A 15-year exploration journey of nonfullerene acceptors. Chin. J. Chem. 2022, 40, 1592–1607.
Moore, J. R.; Albert-Seifried, S.; Rao, A.; Massip, S.; Watts, B.; Morgan, D. J.; Friend, R. H.; McNeill, C. R.; Sirringhaus, H. Polymer blend solar cells based on a high-mobility naphthalenediimide-based polymer acceptor: Device physics, photophysics and morphology. Adv. Energy Mater. 2011, 1, 230–240.
Fabiano, S.; Chen, Z.; Vahedi, S.; Facchetti, A.; Pignataro, B.; Loi, M. A. Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells. J. Mater. Chem. 2011, 21, 5891–5896.
Kim, T.; Kim, J. H.; Kang, T. E.; Lee, C.; Kang, H.; Shin, M.; Wang, C.; Ma, B. W.; Jeong, U.; Kim, T. S. et al. Flexible, highly efficient all-polymer solar cells. Nat. Commun. 2015, 6, 8547.
Zhang, M.; Bai, Y.; Sun, C. K.; Xue, L. W.; Wang, H. Q.; Zhang, Z. G. Perylene-diimide derived organic photovoltaic materials. Sci. China Chem. 2021, 65, 462–485.
Li, M. Y.; Yin, H.; Sun, G. Y. PDI derivatives with functional active position as non-fullerene small molecule acceptors in organic solar cells: From different core linker to various conformation. Appl. Mater. Today 2020, 21, 100799.
Miao, J. H.; Wang, Y. H.; Liu, J.; Wang, L. X. Organoboron molecules and polymers for organic solar cell applications. Chem. Soc. Rev. 2022, 51, 153–187.
Carlé, J. E.; Helgesen, M.; Hagemann, O.; Hösel, M.; Heckler, I. M.; Bundgaard, E.; Gevorgyan, S. A.; Søndergaard, R. R.; Jørgensen, M.; García-Valverde, R. et al. Overcoming the scaling lag for polymer solar cells. Joule 2017, 1, 274–289.
Zhang, Z. G.; Yang, Y. K.; Yao, J.; Xue, L. W.; Chen, S. S.; Li, X. J.; Morrison, W.; Yang, C.; Li, Y. F. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem., Int. Ed. 2017, 56, 13503–13507.
Park, S.; Park, S. H.; Jin, H.; Yoon, S.; Ahn, H.; Shin, S.; Kwak, K.; Nah, S.; Shin, E. Y.; Noh, J. H. et al. Important role of alloyed polymer acceptor for high efficiency and stable large-area organic photovoltaics. Nano Energy 2022, 98, 107187.
Fu, J. H.; Fong, P. W. K.; Liu, H.; Huang, C. S.; Lu, X. H.; Lu, S. R.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C. M.; Yang, Y. et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun 2023, 14, 1760.
Wang, G. D.; Adil, M. A.; Zhang, J. Q.; Wei, Z. X. Large-area organic solar cells: Material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089.
Zhu, L.; Zhong, W. K.; Qiu, C. Q.; Lyu, B.; Zhou, Z. C.; Zhang, M.; Song, J. N.; Xu, J. Q.; Wang, J.; Ali, J. et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv. Mater. 2019, 31, 1902899.
Wu, B. H.; Kong, Y. X.; Zhu, Q. L.; Zhang, S.; Lin, B. J.; Zhao, H.; Xue, J. W.; Seibt, S.; Zhou, K.; Li, Y. X. et al. Limiting phase separation via halogen-free solvent slot-die processing enables highly efficient and eco-friendly all-polymer solar cells. J. Mater. Chem. A 2023, 11, 3028–3037.
Yu, H.; Pan, M. G.; Sun, R.; Agunawela, I.; Zhang, J. Q.; Li, Y. H.; Qi, Z. Y.; Han, H.; Zou, X. H.; Zhou, W. T. et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angew. Chem., Int. Ed. 2021, 60, 10137–10146.
Yu, H.; Qi, Z. Y.; Yu, J. W.; Xiao, Y. Q.; Sun, R.; Luo, Z. H.; Cheung, A. M. H.; Zhang, J. Q.; Sun, H. L.; Zhou, W. T. et al. Fluorinated end group enables high-performance all-polymer solar cells with near-infrared absorption and enhanced device efficiency over 14%. Adv. Energy Mater. 2021, 11, 2003171.
Shen, Y. F.; Zhang, H.; Zhang, J. Q.; Tian, C. Y.; Shi, Y. N.; Qiu, D. D.; Zhang, Z. Q.; Lu, K.; Wei, Z. X. In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater. 2023, 35, 2209030.
Wang, G. D.; Zhang, J. Q.; Yang, C.; Wang, Y. H.; Xing, Y.; Adil, M. A.; Yang, Y.; Tian, L. J.; Su, M.; Shang, W. Q. et al. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices. Adv. Mater. 2020, 32, 2005153.
Sun, C. K.; Pan, F.; Bin, H.; Zhang, J. Q.; Xue, L. W.; Qiu, B. B.; Wei, Z. X.; Zhang, Z. G.; Li, Y. F. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743.
Sun, C. K.; Pan, F.; Chen, S. S.; Wang, R.; Sun, R.; Shang, Z. Y.; Qiu, B. B.; Min, J.; Lv, M. L.; Meng, L. et al. Achieving fast charge separation and low nonradiative recombination loss by rational fluorination for high-efficiency polymer solar cells. Adv. Mater. 2019, 31, 1905480.
Li, Y. W.; Xu, G. Y.; Cui, C. H.; Li, Y. F. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 2018, 8, 1701791.