AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The modification toward excited-state dynamics and catalytic activity by isomeric Au44 clusters

Tongxin Song1,§Jie Kong2,§Shisi Tang1Xiao Cai1Xu Liu1Meng Zhou2( )Wen Wu Xu3( )Weiping Ding1Yan Zhu1( )
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China

§ Tongxin Song and Jie Kong contributed equally to this work.

Show Author Information

Graphical Abstract

The modification in the surface and the core of gold nanoclusters toward catalytic activity and excited-state lifetime is explored.

Abstract

The structure determination of metal nanoclusters protected by ligands is critical in understanding their physical and chemical properties, yet it remains elusive how the metal core and ligand of metal clusters cooperatively contribute to the observed performances. Here, with the successful synthesis of Au44TBPA22Cl2 cluster (TBPA = 4-tert-butylphenylacetylene), the structural isomer of previously reported Au44L28 clusters (L denoted as ligand) is filled, thereby providing an opportunity to explore the property evolution rules imparted by different metal core structures or different surface ligands. Time-resolved transient absorption spectroscopy reveals that the difference in the core structure between Au44TBPA22Cl2 and Au44L28 can bring nearly 360 times variation of excited-state lifetime, while only 3–24 times differences in excited-state lifetimes of the three Au44L28 nanoclusters with identical metal core but different ligands are observed, which is due to much stronger impact of the metal core than the surface ligands in the electronic energy bands of the clusters. In addition, the Au44 clusters protected by alkyne ligands are shown to be highly effective toward the electrochemical oxidation of ethanol, compared to the Au44 clusters capped by thiolates, which is ascribed to smaller charge transfer impedance of the former clusters. We anticipate that the study will enhance the process in controlling the nanomaterial properties by precisely tailoring metal core or surface patterns.

Electronic Supplementary Material

Download File(s)
12274_2023_5862_MOESM1_ESM.cif (5.5 MB)
12274_2023_5862_MOESM2_ESM.pdf (153 KB)
12274_2023_5862_MOESM3_ESM.pdf (1.2 MB)
12274_2023_5862_MOESM4_ESM.pdf (420.4 KB)

References

[1]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[2]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[3]

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

[4]

Guan, Z. J.; Li, J. J.; Hu, F.; Wang, Q. M. Structural engineering toward gold nanocluster catalysis. Angew. Chem., Int. Ed. 2022, 61, e202209725.

[5]

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

[6]

Zhang, Y. F.; Zhang, J. J.; Li, Z. W.; Qin, Z. X.; Sharma, S.; Li, G. Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity. Commun. Chem. 2023, 6, 24.

[7]

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

[8]

Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

[9]

Nakashima, T.; Tanibe, R.; Yoshida, H.; Ehara, M.; Kuzuhara, M.; Kawai, T. Self-regulated pathway-dependent chirality control of silver nanoclusters. Angew. Chem., Int. Ed. 2022, 61, e202208273.

[10]

Huang, J. H.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Spontaneous resolution of chiral multi-thiolate-protected Ag30 nanoclusters. ACS Cent. Sci. 2020, 6, 1971–1976.

[11]

Sun, Y. N.; Liu, X.; Xiao, K.; Zhu, Y.; Chen, M. Y. Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction. ACS Catal. 2021, 11, 11551–11560.

[12]

Seong, H.; Efremov, V.; Park, G.; Kim, H.; Yoo, J. S.; Lee, D. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 14563–14570.

[13]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[14]

Zhou, M.; Zeng, C. J.; Chen, Y. X.; Zhao, S.; Sfeir, M. Y.; Zhu, M. Z.; Jin, R. C. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 2016, 7, 13240.

[15]

Zhang, Y. Y.; Tang, A. C.; Cai, X.; Xu, J. Y.; Liu, X.; Zhu, Y. Manipulating the organic–inorganic interface of atomically precise Au36(SR)24 catalysts for CO oxidation. Chem. Commun. 2022, 58, 3003–3006.

[16]

Liu, J. W.; Feng, L.; Su, H. F.; Wang, Z.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Anisotropic assembly of Ag52 and Ag76 nanoclusters. J. Am. Chem. Soc. 2018, 140, 1600–1603.

[17]

Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114–3124.

[18]

Guan, Z. J.; Zeng, J. L.; Yuan, S. F.; Hu, F.; Lin, Y. M.; Wang, Q. M. Au57Ag53(C≡CPh)40Br12: A large nanocluster with C1 symmetry. Angew. Chem., Int. Ed. 2018, 57, 5703–5707.

[19]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[20]

Zheng, Y. K.; Wu, J. B.; Jiang, H.; Wang, X. M. Gold nanoclusters for theranostic applications. Coordin. Chem. Rev. 2021, 431, 213689.

[21]

Ma, X. S.; Tang, Y.; Ma, G. Y.; Qin, L. B.; Tang, Z. H. Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: Recent advances, grand challenges, and great opportunities. Nanoscale 2021, 13, 602–614.

[22]

Han, S.; Zhang, Z. C.; Li, S. P.; Qi, L. M.; Xu, G. B. Chemiluminescence and electrochemiluminescence applications of metal nanoclusters. Sci. China Chem. 2016, 59, 794–801.

[23]

Liu, X.; Xu, W. W.; Huang, X. Y.; Wang, E. D.; Cai, X.; Zhao, Y.; Li, J.; Xiao, M.; Zhang, C. F.; Gao, Y. et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349.

[24]

Higaki, T.; Liu, C.; Zeng, C. J.; Jin, R. X.; Chen, Y. X.; Rosi, N. L.; Jin, R. C. Controlling the atomic structure of Au30 nanoclusters by a ligand-based strategy. Angew. Chem., Int. Ed. 2016, 55, 6694–6697.

[25]

Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

[26]

Zhang, S. S.; Liu, R. C.; Zhang, X. C.; Feng, L.; Xue, Q. W.; Gao, Z. Y.; Tung, C. H.; Sun, D. Core engineering of paired core–shell silver nanoclusters. Sci. China Chem. 2021, 64, 2118–2124.

[27]

Li, Y. W.; Chen, Y. X.; House, S. D.; Zhao, S.; Wahab, Z.; Yang, J. C.; Jin, R. C. Interface engineering of gold nanoclusters for CO oxidation catalysis. ACS Appl. Mater. Interfaces 2018, 10, 29425–29434.

[28]

Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.

[29]

Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Teo, B. K. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278–3281.

[30]

Zeng, C. J.; Chen, Y. X.; Iida, K.; Nobusada, K.; Kirschbaum, K.; Lambright, K. J.; Jin, R. C. Gold quantum boxes: On the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 2016, 138, 3950–3953.

[31]

Liu, X.; Yao, G.; Cheng, X. L.; Xu, J. Y.; Cai, X.; Hu, W. G.; Xu, W. W.; Zhang, C. F.; Zhu, Y. Cd-driven surface reconstruction and photodynamics in gold nanoclusters. Chem. Sci. 2021, 12, 3290–3294.

[32]

Tang, S. S.; Xu, J. Y.; Liu, X.; Zhu, Y. Ag doped Au44 nanoclusters for electrocatalytic conversion of CO2 to CO. Chem. Eur. J. 2022, 28, e202201262.

[33]

Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279–282.

[34]

Zhou, M.; Higaki, T.; Li, Y. W.; Zeng, C. J.; Li, Q.; Sfeir, M. Y.; Jin, R. C. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754–19764.

[35]

Kwak, K.; Thanthirige, V. D.; Pyo, K.; Lee, D.; Ramakrishna, G. Energy gap law for exciton dynamics in gold cluster molecules. J. Phys. Chem. Lett. 2017, 8, 4898–4905.

[36]

Bai, S. X.; Xu, Y.; Cao, K. L.; Huang, X. Q. Selective ethanol oxidation reaction at the Rh–SnO2 interface. Adv. Mater. 2021, 33, 2005767.

[37]

Chen, D. P.; Yuan, L.; Li, M. J.; Han, W. J.; Liu, X. D.; Liu, X. C.; Wang, C. Y. Pd monolayer on the 3D-hollow-porous Au microsphere as an advanced electrocatalyst for the ethanol oxidation reaction. ACS Appl. Energy Mater. 2022, 5, 5087–5098.

[38]

Zheng, J. H.; Li, G.; Zhang, J. M.; Cheng, N. Y.; Ji, L. F.; Yang, J.; Zhang, J. L.; Zhang, B. W.; Jiang, Y. X.; Sun, S. G. General strategy for evaluating the d-band center shift and ethanol oxidation reaction pathway towards Pt-based electrocatalysts. Sci. China Chem. 2023, 66, 279–288.

[39]

Behravesh, E.; Melander, M. M.; Wärnå, J.; Salmi, T.; Honkala, K.; Murzin, D. Y. Oxidative dehydrogenation of ethanol on gold: Combination of kinetic experiments and computation approach to unravel the reaction mechanism. J. Catal. 2021, 394, 193–205.

[40]

Zhang, Y. Y.; Wang, J. G.; Yu, X. F.; Baer, D. R.; Zhao, Y.; Mao, L. Q.; Wang, F. Y.; Zhu, Z. H. Potential-dynamic surface chemistry controls the electrocatalytic processes of ethanol oxidation on gold surfaces. ACS Energy Lett. 2019, 4, 215–221.

[41]

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

[42]

Tang, Q.; Jiang, D. E. Insights into the PhC≡C/Au interface. J. Phys. Chem. C 2015, 119, 10804–10810.

[43]

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

Nano Research
Pages 11383-11388
Cite this article:
Song T, Kong J, Tang S, et al. The modification toward excited-state dynamics and catalytic activity by isomeric Au44 clusters. Nano Research, 2023, 16(8): 11383-11388. https://doi.org/10.1007/s12274-023-5862-0
Topics:

494

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 April 2023
Revised: 17 May 2023
Accepted: 18 May 2023
Published: 21 June 2023
© Tsinghua University Press 2023
Return