AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Time-resolved luminescent nanoprobes based on lanthanide nucleotide self-assemblies for alkaline phosphatase detection

Yunqin Zhang1,2,§Yang Cao1,4,5,§Yan Liu1,2,5( )Yingjie Yang1Mingmao Chen3Hang Gao1Lushan Lin1Xueyuan Chen1,2,4,5( )
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China

§ Yunqin Zhang and Yang Cao contributed equally to this work.

Show Author Information

Graphical Abstract

A novel strategy for reliable and accurate detection of an enzyme disease biomarker alkaline phosphatase (ALP) was developed by utilizing lanthanide (Ln3+) nucleotide nanoparticles (LNNPs) with extremely improved monodispersity and uniformity, which were achieved by restricting the ATP-Ln3+ self-assembly inside micellar nanoreactor.

Abstract

Currently, enzyme-responsive nanomaterials have shown great promise in prognosis or diagnosis of disease biomarker. However, the great obstacle for conventional enzyme-responsive nanomaterials frequently lies in autofluorescence interference, poor monodispersity, uncontrollable size and morphology, low optical stability, and biotoxicity, which fundamentally impede their practical application in biological systems. To overcome these deficiencies, we proposed a novel strategy for reliable and precise detection of an enzyme disease biomarker, alkaline phosphatase (ALP), through lanthanide (Ln3+) nucleotide nanoparticles (LNNPs) with extremely improved monodispersity and uniformity, which were achieved by the coordination self-assembly between ATP and Ln3+ inside micellar nanoreactor. Specifically, for ATP-Ce/Tb LNNPs, highly improved photoluminescence (PL) emission of Tb3+ can be achieved via efficient Ce3+ sensitization. We demonstrated that ALP could specifically cleave the phosphorus–oxygen (P–O) bonds of ATP and result in the collapse of ATP-Ce/Tb scaffold, finally leading to the PL quenching of Tb3+. By taking advantage of time-resolved (TR) PL technique, the fabricated ATP-Ce/Tb LNNPs presented superior selectivity and sensitivity for the ALP bioassay in complicated serum samples, thus revealing the great potential of ATP-Ce/Tb LNNPs in the areas of ALP-related disease prognosis and diagnosis.

Electronic Supplementary Material

Download File(s)
12274_2023_5863_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Swierczewska, M.; Liu, G.; Lee, S.; Chen, X. Y. High-sensitivity nanosensors for biomarker detection. Chem. Soc. Rev. 2012, 41, 2641–2655.

[2]

Wu, L.; Qu, X. G. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev. 2015, 44, 2963–2997.

[3]

Pasinszki, T.; Krebsz, M. Biosensors for non-invasive detection of celiac disease biomarkers in body fluids. Biosensors (Basel) 2018, 8, 55.

[4]

Nimse, S. B.; Sonawane, M. D.; Song, K. S.; Kim, T. Biomarker detection technologies and future directions. Analyst 2016, 141, 740–755.

[5]

Heinrich, D.; Bruland, Ø.; Guise, T. A.; Suzuki, H.; Sartor, O. Alkaline phosphatase in metastatic castration-resistant prostate cancer: Reassessment of an older biomarker. Future Oncol. 2018, 14, 2543–2556.

[6]

Nanba, K.; Jaffe, E. S.; Braylan, R. C.; Soban, E. J.; Berard, C. W. Alkaline phosphatase-positive malignant lymphoma: A subtype of B-cell lymphomas. Am. J. Clin. Pathol. 1977, 68, 535–542.

[7]

Nizet, A.; Cavalier, E.; Stenvinkel, P.; Haarhaus, M.; Magnusson, P. Bone alkaline phosphatase: An important biomarker in chronic kidney disease-mineral and bone disorder. Clin. Chim. Acta 2020, 501, 198–206.

[8]

Zhang, Y. Y.; Zhou, C.; Li, J. P.; Zhang, Y.; Xie, D.; Liang, M.; Wang, B. Y.; Song, Y.; Wang, X. B.; Huo, Y. et al. Serum alkaline phosphatase levels and the risk of new-onset diabetes in hypertensive adults. Cardiovasc. Diabetol. 2020, 19, 186.

[9]

Benham, F. J.; Fogh, J.; Harris, H. Alkaline phosphatase expression in human cell lines derived from various malignancies. Int. J. Cancer 1981, 27, 637–644.

[10]

Benham, F. J.; Harris, H. Human cell lines expressing intestinal alkaline phosphatase. Proc. Natl. Acad. Sci. USA 1979, 76, 4016–4019.

[11]

Tang, Z. W.; Chen, H. T.; He, H. L.; Ma, C. B. Assays for alkaline phosphatase activity: Progress and prospects. TrAC Trend. Anal. Chem. 2019, 113, 32–43.

[12]

Li, Z.; Liu, F. N.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Wang, B.; Chen, C. X.; Lu, Y. Z. Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Res. 2022, 15, 4411–4420.

[13]

Cao, F. H.; Wang, M. M.; Yi, X.; Sun, D. Enzyme-triggered click chemistry combined with surface-enhanced Raman spectroscopy for the simple and sensitive detection of alkaline phosphatase activity from complex biological samples. Analyst 2022, 147, 2494–2499.

[14]

Xi, C. Y.; Zhang, M.; Jiang, L.; Chen, H. Y.; Lv, J.; He, Y.; Hafez, M. E.; Qian, R. C.; Li, D. W. MOFs-functionalized regenerable SERS sensor based on electrochemistry for pretreatment-free detection of serum alkaline phosphatase activity. Sensor. Actuat. B Chem. 2022, 369, 132264.

[15]

Halawa, M. I.; Gao, W. Y.; Saqib, M.; Kitte, S. A.; Wu, F. X.; Xu, G. B. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate. Biosens. Bioelectron. 2017, 95, 8–14.

[16]

Li, S. J.; Li, C. Y.; Li, Y. F.; Fei, J. J.; Wu, P.; Yang, B.; Ouyang, J.; Nie, S. X. Facile and sensitive near-infrared fluorescence probe for the detection of endogenous alkaline phosphatase activity in vivo. Anal. Chem. 2017, 89, 6854–6860.

[17]

Li, X. M.; Cai, M. C.; Shen, Z. W.; Zhang, M.; Tang, Z. S.; Luo, S. H.; Lu, N. “Three-in-one” nanocomposites as multifunctional nanozymes for ultrasensitive ratiometric fluorescence detection of alkaline phosphatase. J. Mater. Chem. B 2022, 10, 6328–6337.

[18]

Liu, J. J.; Tang, D. S.; Chen, Z. T.; Yan, X. M.; Zhong, Z.; Kang, L. T.; Yao, J. N. Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase. Biosens. Bioelectron. 2017, 94, 271–277.

[19]

Wang, J.; Ma, Q. Q.; Hu, X. X.; Liu, H. Y.; Zheng, W.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 2017, 11, 8010–8017.

[20]

Luo, Z. C.; Liang, X. Q.; He, T.; Qin, X.; Li, X. C.; Li, Y. S.; Li, L.; Loh, X. J.; Gong, C. Y.; Liu, X. G. Lanthanide-nucleotide coordination nanoparticles for STING activation. J. Am. Chem. Soc. 2022, 144, 16366–16377.

[21]

Yang, Y. J.; Liu, Y.; Tu, D. T.; Chen, M. M.; Zhang, Y. Q.; Gao, H.; Chen, X. Y. Tumor-microenvironment-responsive biodegradable nanoagents based on lanthanide nucleotide self-assemblies toward precise cancer therapy. Angew. Chem., Int. Ed. 2022, 61, e202116983.

[22]

Wang, J.; Jiang, Z. R.; Wei, Y. R.; Wang, W. J.; Wang, F. B.; Yang, Y. B.; Song, H.; Yuan, Q. Multiplexed identification of bacterial biofilm infections based on machine-learning-aided lanthanide encoding. ACS Nano 2022, 16, 3300–3310.

[23]

Liu, B. X.; Chen, Y. Responsive lanthanide coordination polymer for hydrogen sulfide. Anal. Chem. 2013, 85, 11020–11025.

[24]

Chen, M. M.; Li, R. Y.; Liu, Y.; Song, X. R.; Tian, J.; Fu, Y. L.; Yang, Y. J.; Liu, C.; Zhang, Q. Q. Near infrared and pH dual-activated coordination polymer nanosystem for imaging-guided chemo-photothermal therapy. Chem. Eng. J. 2021, 406, 126745.

[25]

Zhou, J. J.; Han, H. Y.; Liu, J. W. Nucleobase, nucleoside, nucleotide, and oligonucleotide coordinated metal ions for sensing and biomedicine applications. Nano Res. 2022, 15, 71–84.

[26]

Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770–1839.

[27]

Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 2012, 6, 560–564.

[28]

Gao, H.; Zhang, P.; Guan, T. Y.; Yang, Y. J.; Chen, M. M.; Wei, J. J.; Han, S. Y.; Liu, Y.; Chen, X. Y. Rapid and accurate detection of phosphate in complex biological fluids based on highly improved antenna sensitization of lanthanide luminescence. Talanta 2021, 231, 122243.

[29]

Guo, H. H.; Song, X. R.; Lei, W.; He, C.; You, W. W.; Lin, Q. Z.; Zhou, S. Y.; Chen, X. Y.; Chen, Z. Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes. Angew. Chem., Int. Ed. 2019, 58, 12195–12199.

[30]

Lu, L. Y.; Tu, D. T.; Liu, Y.; Zhou, S. Y.; Zheng, W.; Chen, X. Y. Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes. Nano Res. 2018, 11, 264–273.

[31]

Tu, D. T.; Liu, L. Q.; Ju, Q.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Chen, X. Y. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 6306–6310.

[32]

Bispo, A. G. Jr; Mazali, I. O.; Sigoli, F. A. Sensitization of lanthanide complexes through direct spin-forbidden singlet → triplet excitation. Phys. Chem. Chem. Phys. 2022, 24, 13565–13570.

[33]

Bünzli, J. C. G.; Chauvin, A. S.; Kim, H. K.; Deiters, E.; Eliseeva, S. V. Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coordin. Chem. Rev. 2010, 254, 2623–2633.

[34]

Wu, C. F.; Zhang, R.; Du, W.; Cheng, L.; Liang, G. L. Alkaline phosphatase-triggered self-assembly of near-infrared nanoparticles for the enhanced photoacoustic imaging of tumors. Nano Lett. 2018, 18, 7749–7754.

Nano Research
Pages 11250-11258
Cite this article:
Zhang Y, Cao Y, Liu Y, et al. Time-resolved luminescent nanoprobes based on lanthanide nucleotide self-assemblies for alkaline phosphatase detection. Nano Research, 2023, 16(8): 11250-11258. https://doi.org/10.1007/s12274-023-5863-z
Topics:

857

Views

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 03 April 2023
Revised: 10 May 2023
Accepted: 21 May 2023
Published: 15 July 2023
© Tsinghua University Press 2023
Return