Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Currently, enzyme-responsive nanomaterials have shown great promise in prognosis or diagnosis of disease biomarker. However, the great obstacle for conventional enzyme-responsive nanomaterials frequently lies in autofluorescence interference, poor monodispersity, uncontrollable size and morphology, low optical stability, and biotoxicity, which fundamentally impede their practical application in biological systems. To overcome these deficiencies, we proposed a novel strategy for reliable and precise detection of an enzyme disease biomarker, alkaline phosphatase (ALP), through lanthanide (Ln3+) nucleotide nanoparticles (LNNPs) with extremely improved monodispersity and uniformity, which were achieved by the coordination self-assembly between ATP and Ln3+ inside micellar nanoreactor. Specifically, for ATP-Ce/Tb LNNPs, highly improved photoluminescence (PL) emission of Tb3+ can be achieved via efficient Ce3+ sensitization. We demonstrated that ALP could specifically cleave the phosphorus–oxygen (P–O) bonds of ATP and result in the collapse of ATP-Ce/Tb scaffold, finally leading to the PL quenching of Tb3+. By taking advantage of time-resolved (TR) PL technique, the fabricated ATP-Ce/Tb LNNPs presented superior selectivity and sensitivity for the ALP bioassay in complicated serum samples, thus revealing the great potential of ATP-Ce/Tb LNNPs in the areas of ALP-related disease prognosis and diagnosis.
Swierczewska, M.; Liu, G.; Lee, S.; Chen, X. Y. High-sensitivity nanosensors for biomarker detection. Chem. Soc. Rev. 2012, 41, 2641–2655.
Wu, L.; Qu, X. G. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev. 2015, 44, 2963–2997.
Pasinszki, T.; Krebsz, M. Biosensors for non-invasive detection of celiac disease biomarkers in body fluids. Biosensors (Basel) 2018, 8, 55.
Nimse, S. B.; Sonawane, M. D.; Song, K. S.; Kim, T. Biomarker detection technologies and future directions. Analyst 2016, 141, 740–755.
Heinrich, D.; Bruland, Ø.; Guise, T. A.; Suzuki, H.; Sartor, O. Alkaline phosphatase in metastatic castration-resistant prostate cancer: Reassessment of an older biomarker. Future Oncol. 2018, 14, 2543–2556.
Nanba, K.; Jaffe, E. S.; Braylan, R. C.; Soban, E. J.; Berard, C. W. Alkaline phosphatase-positive malignant lymphoma: A subtype of B-cell lymphomas. Am. J. Clin. Pathol. 1977, 68, 535–542.
Nizet, A.; Cavalier, E.; Stenvinkel, P.; Haarhaus, M.; Magnusson, P. Bone alkaline phosphatase: An important biomarker in chronic kidney disease-mineral and bone disorder. Clin. Chim. Acta 2020, 501, 198–206.
Zhang, Y. Y.; Zhou, C.; Li, J. P.; Zhang, Y.; Xie, D.; Liang, M.; Wang, B. Y.; Song, Y.; Wang, X. B.; Huo, Y. et al. Serum alkaline phosphatase levels and the risk of new-onset diabetes in hypertensive adults. Cardiovasc. Diabetol. 2020, 19, 186.
Benham, F. J.; Fogh, J.; Harris, H. Alkaline phosphatase expression in human cell lines derived from various malignancies. Int. J. Cancer 1981, 27, 637–644.
Benham, F. J.; Harris, H. Human cell lines expressing intestinal alkaline phosphatase. Proc. Natl. Acad. Sci. USA 1979, 76, 4016–4019.
Tang, Z. W.; Chen, H. T.; He, H. L.; Ma, C. B. Assays for alkaline phosphatase activity: Progress and prospects. TrAC Trend. Anal. Chem. 2019, 113, 32–43.
Li, Z.; Liu, F. N.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Wang, B.; Chen, C. X.; Lu, Y. Z. Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Res. 2022, 15, 4411–4420.
Cao, F. H.; Wang, M. M.; Yi, X.; Sun, D. Enzyme-triggered click chemistry combined with surface-enhanced Raman spectroscopy for the simple and sensitive detection of alkaline phosphatase activity from complex biological samples. Analyst 2022, 147, 2494–2499.
Xi, C. Y.; Zhang, M.; Jiang, L.; Chen, H. Y.; Lv, J.; He, Y.; Hafez, M. E.; Qian, R. C.; Li, D. W. MOFs-functionalized regenerable SERS sensor based on electrochemistry for pretreatment-free detection of serum alkaline phosphatase activity. Sensor. Actuat. B Chem. 2022, 369, 132264.
Halawa, M. I.; Gao, W. Y.; Saqib, M.; Kitte, S. A.; Wu, F. X.; Xu, G. B. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate. Biosens. Bioelectron. 2017, 95, 8–14.
Li, S. J.; Li, C. Y.; Li, Y. F.; Fei, J. J.; Wu, P.; Yang, B.; Ouyang, J.; Nie, S. X. Facile and sensitive near-infrared fluorescence probe for the detection of endogenous alkaline phosphatase activity in vivo. Anal. Chem. 2017, 89, 6854–6860.
Li, X. M.; Cai, M. C.; Shen, Z. W.; Zhang, M.; Tang, Z. S.; Luo, S. H.; Lu, N. “Three-in-one” nanocomposites as multifunctional nanozymes for ultrasensitive ratiometric fluorescence detection of alkaline phosphatase. J. Mater. Chem. B 2022, 10, 6328–6337.
Liu, J. J.; Tang, D. S.; Chen, Z. T.; Yan, X. M.; Zhong, Z.; Kang, L. T.; Yao, J. N. Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase. Biosens. Bioelectron. 2017, 94, 271–277.
Wang, J.; Ma, Q. Q.; Hu, X. X.; Liu, H. Y.; Zheng, W.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 2017, 11, 8010–8017.
Luo, Z. C.; Liang, X. Q.; He, T.; Qin, X.; Li, X. C.; Li, Y. S.; Li, L.; Loh, X. J.; Gong, C. Y.; Liu, X. G. Lanthanide-nucleotide coordination nanoparticles for STING activation. J. Am. Chem. Soc. 2022, 144, 16366–16377.
Yang, Y. J.; Liu, Y.; Tu, D. T.; Chen, M. M.; Zhang, Y. Q.; Gao, H.; Chen, X. Y. Tumor-microenvironment-responsive biodegradable nanoagents based on lanthanide nucleotide self-assemblies toward precise cancer therapy. Angew. Chem., Int. Ed. 2022, 61, e202116983.
Wang, J.; Jiang, Z. R.; Wei, Y. R.; Wang, W. J.; Wang, F. B.; Yang, Y. B.; Song, H.; Yuan, Q. Multiplexed identification of bacterial biofilm infections based on machine-learning-aided lanthanide encoding. ACS Nano 2022, 16, 3300–3310.
Liu, B. X.; Chen, Y. Responsive lanthanide coordination polymer for hydrogen sulfide. Anal. Chem. 2013, 85, 11020–11025.
Chen, M. M.; Li, R. Y.; Liu, Y.; Song, X. R.; Tian, J.; Fu, Y. L.; Yang, Y. J.; Liu, C.; Zhang, Q. Q. Near infrared and pH dual-activated coordination polymer nanosystem for imaging-guided chemo-photothermal therapy. Chem. Eng. J. 2021, 406, 126745.
Zhou, J. J.; Han, H. Y.; Liu, J. W. Nucleobase, nucleoside, nucleotide, and oligonucleotide coordinated metal ions for sensing and biomedicine applications. Nano Res. 2022, 15, 71–84.
Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770–1839.
Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 2012, 6, 560–564.
Gao, H.; Zhang, P.; Guan, T. Y.; Yang, Y. J.; Chen, M. M.; Wei, J. J.; Han, S. Y.; Liu, Y.; Chen, X. Y. Rapid and accurate detection of phosphate in complex biological fluids based on highly improved antenna sensitization of lanthanide luminescence. Talanta 2021, 231, 122243.
Guo, H. H.; Song, X. R.; Lei, W.; He, C.; You, W. W.; Lin, Q. Z.; Zhou, S. Y.; Chen, X. Y.; Chen, Z. Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes. Angew. Chem., Int. Ed. 2019, 58, 12195–12199.
Lu, L. Y.; Tu, D. T.; Liu, Y.; Zhou, S. Y.; Zheng, W.; Chen, X. Y. Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes. Nano Res. 2018, 11, 264–273.
Tu, D. T.; Liu, L. Q.; Ju, Q.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Chen, X. Y. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 6306–6310.
Bispo, A. G. Jr; Mazali, I. O.; Sigoli, F. A. Sensitization of lanthanide complexes through direct spin-forbidden singlet → triplet excitation. Phys. Chem. Chem. Phys. 2022, 24, 13565–13570.
Bünzli, J. C. G.; Chauvin, A. S.; Kim, H. K.; Deiters, E.; Eliseeva, S. V. Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coordin. Chem. Rev. 2010, 254, 2623–2633.
Wu, C. F.; Zhang, R.; Du, W.; Cheng, L.; Liang, G. L. Alkaline phosphatase-triggered self-assembly of near-infrared nanoparticles for the enhanced photoacoustic imaging of tumors. Nano Lett. 2018, 18, 7749–7754.