AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Emerging single-atom nanozymes for catalytic biomedical uses

Shuangfei Cai1( )Wei Zhang3Rong Yang1,2( )
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Show Author Information

Graphical Abstract

A systematic outline of recent progress in single-atom nanozymes for catalytic biomedical applications is provided.

Abstract

The past four years have witnessed booming progress in single-atom nanozymes (SANs), one of the newest generations of nanozymes with atomically dispersed metal sites for catalytic biomedical uses. They show distinct advantages over their nanoparticle-based counterparts, such as well-defined electronic/geometric structures and complete atomic utilization efficiency, thus offering opportunities to develop advanced nanozymes for practical uses. The atomically dispersed active centers in SANs could also facilitate the precise regulation of catalytic performance, while probing structure–activity relationship for in-depth understanding of mechanism. In this review, we first introduce the synthetic approaches, surface engineering, and characterization techniques of SANs. Subsequently, we discuss the enzyme-like properties of SANs, including some strategies for boosting their catalytic activities. Furthermore, we present their biomedical applications, ranging from biosensors, antibacterial uses, antioxidants, to therapeutics. Finally, the challenges and opportunities of SANs are prospected.

References

[1]

Manea, F.; Houillon, F. B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem., Int. Ed. 2004, 43, 6165–6169.

[2]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[3]

Xi, Z.; Wei, K. C.; Wang, Q. X.; Kim, M. K.; Sun, S. H.; Fung, V.; Xia, X. H. Nickel-platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. J. Am. Chem. Soc. 2021, 143, 2660–2664.

[4]

Mu, J. S.; Zhang, L.; Zhao, M.; Wang, Y. Co3O4 nanoparticles as an efficient catalase mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J. Mol. Catal. A: Chem. 2013, 378, 30–37.

[5]

Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.

[6]

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

[7]

Cai, S. F.; Fu, Z.; Xiao, W.; Xiong, Y. L.; Wang, C.; Yang, R. Zero-dimensional/two-dimensional AuxPd100−x nanocomposites with enhanced nanozyme catalysis for sensitive glucose detection. ACS Appl. Mater. Interfaces 2020, 12, 11616–11624.

[8]

Cai, S. F.; Han, Q. S.; Qi, C.; Lian, Z.; Jia, X. H.; Yang, R.; Wang, C. Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 2016, 8, 3685–3693.

[9]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[10]

Gomollón-Bel, F. IUPAC top ten emerging technologies in chemistry 2022. Chem. Int. 2022, 44, 4–13.

[11]

Cai, S. F.; Qi, C.; Li, Y. D.; Han, Q. S.; Yang, R.; Wang, C. PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 2016, 4, 1869–1877.

[12]

Cai, S. F.; Lian, C.; Duan, H. H.; Xiao, W.; Han, Q. S.; Qi, C.; Wang, C.; Yang, R. Facile strategy to prepare Rh nanosheet-supported PtRh nanoparticles with synergistically enhanced catalysis in oxidation. Chem. Mater. 2019, 31, 808–818.

[13]

Fu, Z.; Ni, D. Q.; Cai, S. F.; Li, H. L.; Xiong, Y. L.; Yang, R.; Chen, C. Y. Versatile BP/Pd-FPEI-CpG nanocomposite for “three-in-one” multimodal tumor therapy. Nano Today 2022, 46, 101590.

[14]

Wei, J. P.; Chen, X. L.; Shi, S. G.; Mo, S. G.; Zheng, N. F. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015, 7, 19018–19026.

[15]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[16]

Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

[17]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[18]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[19]

Li, Z. J.; Wang, D. S.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

[20]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[21]

Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.

[22]

Egorova, K. S.; Ananikov, V. P. Toxicity of metal compounds: Knowledge and myths. Organometallics 2017, 36, 4071–4090.

[23]

Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.

[24]

Meng, F. C.; Zhu, P. B.; Yang, L. N.; Xia, L. X.; Liu, H. Y. Nanozymes with atomically dispersed metal centers: Structure–activity relationships and biomedical applications. Chem. Eng. J. 2023, 452, 139411.

[25]

Sheng, J. Y.; Wu, Y. H.; Ding, H.; Feng, K. Z.; Shen, Y.; Zhang, Y.; Gu, N. Multienzyme-like nanozymes: Regulation, rational design, and application. Adv. Mater. 2023, 2211210.

[26]

Peng, C.; Pang, R. Y.; Li, J.; Wang, E. K. Current advances on the single-atom nanozyme and its bio-applications. Adv. Mater. 2023, 2211724.

[27]

Wang, J.; Li, Z. J.; Wu, Y. E.; Li, Y. D. Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater. 2018, 30, 1801649.

[28]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[29]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[30]

Wu, J. B.; Xiong, L. K.; Zhao, B. T.; Liu, M. L.; Huang, L. Densely populated single atom catalysts. Small Methods 2020, 4, 1900540.

[31]

Yan, B. S.; Wang, F. T.; He, S. J.; Liu, W. D.; Zhang, C. H.; Chen, C. X.; Lu, Y. Z. Peroxidase-like activity of Ru-N-C nanozymes in colorimetric assay of acetylcholinesterase activity. Anal. Chim. Acta 2022, 1191, 339362.

[32]

Zhang, S. F.; Li, Y. H.; Sun, S.; Liu, L.; Mu, X. Y.; Liu, S. H.; Jiao, M. L.; Chen, X. Z.; Chen, K.; Ma, H. Z. et al. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat. Commun. 2022, 13, 4744.

[33]

Guan, J. P.; Wang, M.; Ma, R. Z.; Liu, Q.; Sun, X. T.; Xiong, Y.; Chen, X. Q. Single-atom Rh nanozyme: An efficient catalyst for highly sensitive colorimetric detection of acetylcholinesterase activity and adrenaline. Sens. Actuators B. Chem. 2023, 375, 132972.

[34]

Cao, F. F.; Zhang, L.; You, Y. W.; Zheng, L. R.; Ren, J. S.; Qu, X. G. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew. Chem., Int. Ed. 2020, 59, 5108–5115.

[35]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

[36]

Jiao, L.; Wu, J. B.; Zhong, H.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Chen, Y. F.; Yan, H. Y.; Zhang, Q. H.; Gu, W. L. et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.

[37]

Xie, X. Y.; Chen, X. F.; Wang, Y. H.; Zhang, M. S.; Fan, Y. X.; Yang, X. P. High-loading Cu single-atom nanozymes supported by carbon nitride with peroxidase-like activity for the colorimetric detection of tannic acid. Talanta 2023, 257, 124387.

[38]

Feng, Q. H.; Wang, G.; Xue, L. H.; Wang, Y. S.; Liu, M. L.; Liu, J.; Zhang, S. T.; Hu, W. P. Single-atom nanozyme based on Mn-center with enhanced peroxidase-like activity for organic dye degradation. ACS Appl. Nano Mater. 2023, 6, 4844–4853.

[39]

Chen, T. T.; Zhou, D. D.; Hou, S. H.; Li, Y.; Liu, Y.; Zhang, M. L.; Zhang, G. B.; Xu, H. Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 2022, 94, 15270–15279.

[40]

Zhu, S. C.; Li, Z.; Zhang, F. F.; Liu, F. N.; Ni, P. J.; Chen, C. X.; Jiang, Y. Y.; Lu, Y. Z. Single-atom cobalt catalysts as highly efficient oxidase mimics for time-based visualization monitoring the TAC of skin care products. Chem. Eng. J. 2023, 456, 141053.

[41]

Chen, S. H.; Lu, W.; Xu, R.; Tan, J.; Liu, X. Y. Pyrolysis-free and universal synthesis of metal-NC single-atom nanozymes with dual catalytic sites for cytoprotection. Carbon 2023, 201, 439–448.

[42]

Yan, R. J.; Sun, S.; Yang, J.; Long, W.; Wang, J. Y.; Mu, X. Y.; Li, Q. F.; Hao, W. T.; Zhang, S. F.; Liu, H. L. et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano 2019, 13, 11552–11560.

[43]

Ruan, H. Y.; Zhang, S. F.; Wang, H. G.; Pei, J. H.; Zhao, R. L.; Mu, X. Y.; Wang, H.; Zhang, X. D. Single-atom Pd/CeO2 nanostructures for mimicking multienzyme activities. ACS Appl. Nano Mater. 2022, 5, 6564–6574.

[44]

Shi, Q.; Wu, Q.; Li, H. S.; Shi, D.; X.; Zhao, Y.; Jiao, Q. Z. Enhanced catalytic performance of UiO-66 via a sulfuric acid post-synthetic modification strategy with partial etching. Appl. Catal. A: Gen. 2020, 602, 117733.

[45]

Li, T.; Bao, Y. H.; Qiu, H. Q.; Tong, W. J. Boosted peroxidase-like activity of metal–organic framework nanoparticles with single atom Fe(III) sites at low substrate concentration. Anal. Chim. Acta 2021, 1152, 338299.

[46]

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

[47]

Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nat. Chem. 2018, 10, 325–332.

[48]

Boucher, M. B.; Zugic, B.; Cladaras, G.; Kammert, J.; Marcinkowski, M. D.; Lawton, T. J.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Phys. Chem. Chem. Phys. 2013, 15, 12187–12196.

[49]

Zhang, H. J.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 2012, 11, 49–52.

[50]

Wang, L. C.; Chang, L. C.; Chen, W. Q.; Chien, Y. H.; Chang, P. Y.; Pao, C. W.; Liu, Y. F.; Sheu, H. S.; Su, W. P.; Yeh, C. H. et al. Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy. Nat. Commun. 2022, 13, 7772.

[51]

Zhou, J.; Xu, D. T.; Tian, G.; He, Q.; Zhang, X.; Liao, J.; Mei, L. Q.; Chen, L.; Gao, L. Z.; Zhao, L. N. et al. Coordination-driven self-assembly strategy-activated Cu single-atom nanozymes for catalytic tumor-specific therapy. J. Am. Chem. Soc. 2023, 145, 4279–4293.

[52]

Niu, R.; Liu, Y.; Wang, Y. H.; Zhang, H. J. An Fe-based single-atom nanozyme with multi-enzyme activity for parallel catalytic therapy via a cascade reaction. Chem. Commun. 2022, 58, 7924–7927.

[53]

Su, Y. T.; Wu, F.; Song, Q. X.; Wu, M. J.; Mohammadniaei, M.; Zhang, T. W.; Liu, B. L.; Wu, S. S.; Zhang, M.; Li, A. et al. Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials 2022, 281, 121325.

[54]

Ye, J.; Lv, W. B.; Li, C. S.; Liu, S.; Yang, X.; Zhang, J. W.; Wang, C.; Xu, J. T.; Jin, G. Q.; Li, B. et al. Tumor response and NIR-II photonic thermal Co-enhanced catalytic therapy based on single-atom manganese nanozyme. Adv. Funct. Mater. 2022, 32, 2206157.

[55]

Cao, F. F.; Sang, Y. J.; Liu, C. Y.; Bai, F. Q.; Zheng, L. R.; Ren, J. S.; Qu, X. G. Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS Nano 2022, 16, 855–868.

[56]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[57]

Fu, L. L.; Tang, Y. H.; Lin, Y. H. Advances in synchrotron radiation-based X-ray absorption spectroscopy to characterize the fine atomic structure of single-atom nanozymes. Chem. Asian J. 2020, 15, 2110–2116.

[58]

Gao, Z. R.; Li, A. W.; Ma, D.; Zhou, W. Electron energy loss spectroscopy for single atom catalysis. Top. Catal. 2022, 65, 1609–1619.

[59]

Otake, K. I.; Cui, Y. X.; Buru, C. T.; Li, Z. Y.; Hupp, J. T.; Farha, O. K. Single-atom-based vanadium oxide catalysts supported on metal–organic frameworks: Selective alcohol oxidation and structure–activity relationship. J. Am. Chem. Soc. 2018, 140, 8652–8656.

[60]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[61]

Lyu, Z. Y.; Ding, S. C.; Fang, L. Z.; Li, X.; Li, T.; Xu, M. J.; Pan, X. Q.; Zhu, W. L.; Zhou, Y.; Du, D. et al. Two-dimensional Fe-N-C single-atomic-site catalysts with boosted peroxidase-like activity for a sensitive immunoassay. Anal. Chem. 2023, 95, 4521–4528.

[62]

Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A. L.; Zhang, J.; Huang, Z. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, 2107088.

[63]

Xie, X. L.; Wang, Y. F.; Zhou, X. B.; Chen, J. Y.; Wang, M. K.; Su, X. G. Fe-N-C single-atom nanozymes with peroxidase-like activity for the detection of alkaline phosphatase. Analyst 2021, 146, 896–903.

[64]

Xu, W. Q.; Song, W. Y.; Kang, Y. K.; Jiao, L.; Wu, Y.; Chen, Y. F.; Cai, X. L.; Zheng, L. R.; Gu, W. L.; Zhu, C. Z. Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 2021, 93, 12758–12766.

[65]

Niu, X. H.; Shi, Q. R.; Zhu, W. L.; Liu, D.; Tian, H. Y.; Fu, S. F.; Cheng, N.; Li, S. Q.; Smith, J. N.; Du, D. et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495.

[66]

Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.

[67]

Wu, Y.; Wu, J. B.; Jiao, L.; Xu, W. Q.; Wang, H. J.; Wei, X. Q.; Gu, W. L.; Ren, G. X.; Zhang, N.; Zhang, Q. H. et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 2020, 92, 3373–3379.

[68]

He, H.; Fei, Z. Y.; Guo, T. L.; Hou, Y.; Li, D.; Wang, K. F.; Ren, F. Z.; Fan, K. L.; Zhou, D. J.; Xie, C. M. et al. Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. Biomaterials 2022, 280, 121272.

[69]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[70]

Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

[71]

Liu, X. L.; Liu, Q.; He, X. J.; Yang, G. J.; Chen, X.; Meng, J. S.; Hu, B.; Qian, Y. N.; Shen, J. L.; Jin, L. et al. NIR-II-enhanced single-atom-nanozyme for sustainable accelerating bacteria-infected wound healing. Appl. Surf. Sci. 2013, 612, 155866.

[72]

Sun, L. P.; Yan, Y.; Chen, S.; Zhou, Z. J.; Tao, W.; Li, C.; Feng, Y.; Wang, F. Co-N-C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols. Anal. Bioanal. Chem. 2022, 414, 1857–1865.

[73]

Song, G. C.; Zhang, Q.; Liang, S.; Yao, Y.; Feng, M. L.; Majid, Z.; He, X. Y.; Huang, K. L.; Li, J. C.; Cheng, N. Oxidation activity modulation of a single atom Ce-N-C nanozyme enabling a time-resolved sensor to detect Fe3+ and Cr6+. J. Mater. Chem. C 2022, 10, 15656–15663.

[74]

Liu, D.; Gao, H. M.; Jiang, W. J.; Yan, S.; Liu, H.; Chen, J. J.; Wen, S. S.; Zhang, W.; Wang, X.; Zhao, B. et al. Ag aerogel-supported single-atom Hg nanozyme enables efficient SERS monitoring of enhanced oxidase-like catalysis. Anal. Chem. 2023, 95, 4335–4343.

[75]

Zhu, J. R.; Li, Q. L.; Li, X.; Wu, X. M.; Yuan, T.; Yang, Y. L. Simulated enzyme activity and efficient antibacterial activity of copper-doped single-atom nanozymes. Langmuir 2022, 38, 6860–6870.

[76]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[77]

Wang, Y.; Zhang, Z. W.; Jia, G. R.; Zheng, L. R.; Zhao, J. X.; Cui, X. Q. Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics. Chem. Commun. 2019, 55, 5271–5274.

[78]

Yu, F. T.; Cangelosi, V. M.; Zastrow, M. L.; Tegoni, M.; Plegaria, J. S.; Tebo, A. G.; Mocny, C. S.; Ruckthong, L.; Qayyum, H.; Pecoraro, V. L. Protein design: Toward functional metalloenzymes. Chem. Rev. 2014, 114, 3495–3578.

[79]

Song, G. C.; Li, J. C.; Majid, Z.; Xu, W. T.; He, X. Y.; Yao, Z. Y.; Luo, Y. B.; Huang, K. L.; Cheng, N. Phosphatase-like activity of single-atom Ce-N-C nanozyme for rapid detection of Al3+. Food Chem. 2022, 390, 133127.

[80]

Lin, Y. M.; Wang, F.; Yu, J.; Zhang, X.; Lu, G. P. Iron single-atom anchored N-doped carbon as a “laccase-like” nanozyme for the degradation and detection of phenolic pollutants and adrenaline. J. Hazard. Mater. 2022, 425, 127763.

[81]

Cao, S. J.; Zhao, Z. Y.; Zheng, Y. J.; Wu, Z. H.; Ma, T.; Zhu, B. H.; Yang, C. D.; Xiang, X.; Ma, L.; Han, X. D. et al. A library of ROS-catalytic metalloenzyme mimics with atomic metal centers. Adv. Mater. 2022, 34, 2200255.

[82]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong , J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[83]

Jiao, L.; Xu, W. Q.; Zhang, Y.; Wu, Y.; Gu, W. L.; Ge, X. X.; Chen, B. B.; Zhu, C. Z.; Guo, S. J. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 2020, 35, 100971.

[84]

Feng, M.; Zhang, Q.; Chen, X. F.; Deng, D.; Xie, X. Y.; Yang, X. P. Controllable synthesis of boron-doped Zn-N-C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosens. Bioelectron. 2022, 210, 114294.

[85]

Yu, Y.; Cheng, Y.; Tan, L.; Liu, X. M.; Li, Z. Y.; Zheng, Y. F.; Wu, T.; Liang, Y. Q.; Cui, Z. D.; Zhu, S. L. et al. Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis. Chem. Eng. J. 2022, 431, 133279.

[86]

Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 2209654.

[87]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[88]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202213318.

[89]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[90]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, 61, e202205946.

[91]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Coδ+ interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[92]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[93]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[94]

Chen, X. F.; Wang, Y.; Feng, M.; Deng, D.; Xie, X. Y.; Deng, C. X.; Khattak, K. N.; Yang, X. P. Dual-active-site Fe/Cu single-atom nanozymes with multifunctional specific peroxidase-like properties for S2− detection and dye degradation. Chin. Chem. Lett. 2023, 34, 107969.

[95]

Feng, M.; Chen, X. F.; Liu, Y. H.; Zhao, Y.; Karmaker, P. G.; Liu, J.; Wang, Y.; Yang, X. P. Atomically dispersed Fe-Zn dual-site nanozymes with synergistic catalytic effects for the simultaneous detection of Cr(VI) and 8-hydroxyquinoline. J. Mater. Chem. B 2023, 11, 4020–4027.

[96]

Ma, C. B.; Xu, Y. P.; Wu, L. X.; Wang, Q.; Zheng, J. J.; Ren, G. X.; Wang, X. Y.; Gao, X. F.; Zhou, M.; Wang, M. et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem., Int. Ed. 2022, 61, e202116170.

[97]

Zhao, M. Y.; Yang, R. G.; Wei, Y. R.; Su, J. J.; Wang, X. N.; Zhang, N.; Sun, P. C.; Chen, D. L.; Zhao, Y. X. Dual isolated bimetal single-atom catalysts for tumor ROS cycle and parallel catalytic therapy. Nano Today 2022, 44, 101493.

[98]

Wu, R. F.; Sun, M. R.; Liu, X. L.; Qin, F. J.; Zhang, X. Y.; Qian, Z. N.; Huang, J.; Li, Y. J.; Tan, T.; Chen, W. X. et al. Oxidase-like ZnCoFe three-atom nanozyme as a colorimetric platform for ascorbic acid sensing. Anal. Chem. 2022, 94, 14308–14316.

[99]

Wei, X. Q.; Song, S. J.; Song, W. Y.; Wen, Y. T.; Xu, W. Q.; Chen, Y. F.; Wu, Z. C.; Qin, Y.; Jiao, L.; Wu, Y. et al. Tuning iron spin states in single-atom nanozymes enables efficient peroxidase mimicking. Chem. Sci. 2022, 13, 13574–13581.

[100]

Yang, X.; Xiang, J. H.; Su, W.; Guo, J. F.; Deng, J. J.; Tang, L. J.; Li, G. H.; Liang, Y. L.; Zheng, L.; He, M. L. et al. Modulating Pt nanozyme by using isolated cobalt atoms to enhance catalytic activity for alleviating osteoarthritis. Nano Today 2023, 49, 101809.

[101]

Chen, Y. F.; Jiao, L.; Yan, H. Y.; Xu, W. Q.; Wu, Y.; Zheng, L. R.; Gu, W. L.; Zhu, C. Z. Fe-N-C single-atom catalyst coupling with Pt clusters boosts peroxidase-like activity for cascade-amplified colorimetric immunoassay. Anal. Chem. 2021, 93, 12353–12359.

[102]

Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

[103]

Zhang, J. Y.; Sun, B. H.; Zhang, M.; Su, Y. T.; Xu, W.; Sun, Y. H.; Jiang, H. J.; Zhou, N. L.; Shen, J.; Wu, F. Modulating the local coordination environment of cobalt single-atomic nanozymes for enhanced catalytic therapy against bacteria. Acta Biomater. 2023, 164, 563–576.

[104]

Li, Z.; Liu, F. N.; Chen, C. X.; Jiang, Y. Y.; Ni, P. J.; Song, N. N.; Hu, Y.; Xi, S. B.; Liang, M. M.; Lu, Y. Z. Regulating the N coordination environment of Co single-atom nanozymes for highly efficient oxidase mimics. Nano Lett. 2023, 23, 1505–1513.

[105]

Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

[106]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[107]

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal–support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

[108]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[109]

Wang, Y.; Qi, K.; Yu, S. S.; Jia, G. R.; Cheng, Z. L.; Zheng, L. R.; Wu, Q.; Bao, Q. L.; Wang, Q. Q.; Zhao, J. X. et al. Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2. Nano-Micro Lett. 2019, 11, 102.

[110]

Zhang, R. F.; Xue, B.; Tao, Y. H.; Zhao, H. Q.; Zhang, Z. X.; Wang, X. N.; Zhou, X. Y.; Jiang, B.; Yang, Z. L.; Yan, X. Y. et al. Edge-site engineering of defective Fe-N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv. Mater. 2022, 34, 2205324.

[111]

Chen, M.; Zhang, H. J.; Tian, L.; Lv, H. W.; Chen, C.; Liu, X. K.; Wang, W. Y.; Wang, Y. W.; Zhao, Y. F.; Wang, J. et al. Solid migration to assemble a flower-like nanozyme with highly dense single copper sites for specific phenol oxidation. ACS Appl. Mater. Interfaces 2023, 15, 407–415.

[112]

Li, X.; Ding, S. C.; Lyu, Z. Y.; Tieu, P.; Wang, M. Y.; Feng, Z. X.; Pan, X. Q.; Zhou, Y.; Niu, X. H.; Du, D. et al. Single-atomic iron doped carbon dots with both photoluminescence and oxidase-like activity. Small 2022, 18, 2203001.

[113]

Shen, L. H.; Khan, M. A.; Wu, X. Y.; Cai, J.; Lu, T.; Ning, T.; Liu, Z. M.; Lu, W. C.; Ye, D. X.; Zhao, H. B. et al. Fe-N-C single-atom nanozymes based sensor array for dual signal selective determination of antioxidants. Biosens. Bioelectron. 2022, 205, 114097.

[114]

Liu, J.; Gong, L.; Chen, H. Y.; Gui, J. L.; Zhu, X. H.; Liu, M. L.; Zhang, Y. Y.; Yao, S. Z. Fe-single-atom nanozyme catalysts for sensitive and selective detection of nitrite via colorimetry and test strips. ACS Appl. Nano Mater. 2023, 6, 5879–5888.

[115]

Jing, W. J.; Cui, X. K.; Kong, F. B.; Wei, W.; Li, Y. C.; Fan, L. Z.; Li, X. H. Fe-N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants. Analyst 2021, 146, 207–212.

[116]

Ge, J.; Yang, L. K.; Li, Z. H.; Wan, Y.; Mao, D. S.; Deng, R. J.; Zhou, Q.; Yang, Y.; Tan, W. H. A colorimetric smartphone-based platform for pesticides detection using Fe-N/C single-atom nanozyme as oxidase mimetics. J. Hazard. Mater. 2022, 436, 129199.

[117]

Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D. et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019, 15, 1903108.

[118]

Wang, L. Y.; Yang, Q. H.; Huo, M. F.; Lu, D.; Gao, Y. S.; Chen, Y.; Xu, H. X. Engineering single-atomic iron-catalyst-integrated 3D-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv. Mater. 2021, 33, 2100150.

[119]

Feng, Y. Y.; Qin, J.; Zhou, Y.; Yue, Q.; Wei, J. Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy. J. Colloid Interf. Sci. 2022, 606, 826–836.

[120]

Wu, F.; Ma, J. H.; Wang, Y.; Xie, L. P.; Yan, X. J.; Shi, L. Q.; Li, Y. F.; Liu, Y. Single copper atom photocatalyst powers an integrated catalytic cascade for drug-resistant bacteria elimination. ACS Nano 2023, 17, 2980–2991.

[121]

Yu, Y.; Tan, L.; Li, Z. Y.; Liu, X. M.; Zheng, Y. F.; Feng, X. B.; Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Wu, S. L. Single-atom catalysis for efficient sonodynamic therapy of methicillin-resistant Staphylococcus aureus-infected osteomyelitis. ACS Nano 2021, 15, 10628–10639.

[122]

Wang, D. J.; Zhang, B.; Ding, H.; Liu, D.; Xiang, J. Q.; Gao, X. J., Chen, X. H.; Li, Z. J.; Yang, L.; Duan, H. X. et al. TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today 2021, 40, 101243.

[123]

Zhang, Y. H.; Liu, W. L.; Wang, X. Y.; Liu, Y. F.; Wei, H. Nanozyme-enabled treatment of cardio- and cerebrovascular diseases. Small 2023, 19, 2204809.

[124]

Yang, J.; Zhang, R. F.; Zhao, H. Q.; Qi, H. F.; Li, J. Y.; Li, J. F.; Zhou, X. Y.; Wang, A. Q.; Fan, K. L.; Yan, X. Y. et al. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. Exploration 2022, 2, 20210267.

[125]

Huang, B.; Tang, T.; Chen, S. H.; Li, H.; Sun, Z. J.; Zhang, Z. L.; Zhang, M. X.; Cui, R. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nat. Commun. 2023, 14, 197.

[126]

Lu, X. Y.; Gao, S. S.; Lin, H.; Shi, J. L. Single-atom catalysts for nanocatalytic tumor therapy. Small 2021, 17, 2004467.

[127]

Muhammad, P.; Hanif, S.; Li, J. Y.; Guller, A.; Rehman, F. U.; Ismail, M.; Zhang, D. Y.; Yan, X. Y.; Fan, K. L.; Shi, B. Y. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 2022, 45, 101530.

[128]

Lu, X. Y.; Gao, S. S.; Lin, H.; Yu, L. D.; Han, Y. H.; Zhu, P.; Bao, W. C.; Yao, H. L.; Chen, Y.; Shi, J. L. Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy. Adv. Mater. 2020, 32, 2002246.

[129]

Wang, W. Y.; Zhu, Y.; Zhu, X. R.; Zhao, Y. F.; Xue, Z. G.; Xiong, C.; Wang, Z. Y.; Qu, Y. T.; Cheng, J. J.; Chen, M. et al. Biocompatible ruthenium single-atom catalyst for cascade enzyme-mimicking therapy. ACS Appl. Mater. Interfaces 2021, 13, 45269–45278.

[130]

Wang, D. D.; Wu, H. H.; Wang, C. L.; Gu, L.; Chen, H. Z.; Jana, D.; Feng, L. L.; Liu, J. W.; Wang, X. Y.; Xu, P. P. et al. Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angew. Chem., Int. Ed. 2021, 60, 3001–3007.

[131]

Zhu, Y.; Wang, W. Y.; Gong, P.; Zhao, Y. F.; Pan, Y. B.; Zou, J. H.; Ao, R. J.; Wang, J.; Cai, H. L.; Huang, H. W. et al. Enhancing catalytic activity of a nickel single atom enzyme by polynary heteroatom doping for ferroptosis-based tumor therapy. ACS Nano 2023, 17, 3064–3076.

[132]

Cai, S. F.; Liu, J. M.; Ding, J. W.; Fu, Z.; Li, H. L.; Xiong, Y. L.; Lian, Z.; Yang, R.; Chen, C. Y. Tumor-microenvironment-responsive cascade reactions by a cobalt-single-atom nanozyme for synergistic nanocatalytic chemotherapy. Angew. Chem., Int. Ed. 2022, 61, e202204502.

[133]

Qi, P. Y.; Zhang, J. Y.; Bao, Z. R.; Liao, Y. P.; Liu, Z. M.; Wang, J. K. A platelet-mimicking single-atom nanozyme for mitochondrial damage-mediated mild-temperature photothermal therapy. ACS Appl. Mater. Interfaces 2022, 14, 19081–19090.

[134]

Wang, L.; Qu, X. Z.; Zhao, Y. X.; Weng, Y. Z. W.; Waterhouse, G. I. N.; Yan, H.; Guan, S. Y.; Zhou, S. Y. Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy. ACS Appl. Mater. Interfaces 2019, 11, 35228–35237.

[135]

Cheng, J. J.; Li, L.; Jin, D.; Dai, Y.; Zhu, Y.; Zou, J. H.; Liu, M. M.; Yu, W. X.; Yu, J. J.; Sun, Y. F. et al. Boosting ferroptosis therapy with iridium single-atom nanocatalyst in ultralow metal content. Adv. Mater. 2023, 35, 2210037.

[136]

Shao, B. Y.; Zhu, Y. L.; Du, Y. Q.; Yang, D.; Gai, S. L.; He, F.; Yang, P. P. Mn-doped single atom nanozyme composited Au for enhancing enzymatic and photothermal therapy. J. Colloid Interf. Sci. 2022, 628, 419–434.

[137]

Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

[138]

Qin, L. M.; Gan, J.; Niu, D. C.; Cao, Y. Q.; Duan, X. Z.; Qin, X.; Zhang, H.; Jiang, Z.; Jiang, Y. J.; Dai, S. et al. Interfacial-confined coordination to single-atom nanotherapeutics. Nat. Commun. 2022, 13, 91.

[139]

Du, F. X.; Liu, L. C.; Wu, Z. H.; Zhao, Z. Y.; Geng, W.; Zhu, B. H.; Ma, T.; Xiang, X.; Ma, L.; Cheng, C. et al. Pd-single-atom coordinated biocatalysts for chem-/sono-/photo-trimodal tumor therapies. Adv. Mater. 2021, 33, 2101095.

[140]

Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.

[141]

Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Lim, W. Q.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.

[142]

Cheng, Q. Q.; Zhang, M.; Huang, H.; Dong, C. H.; Dai, X. Y.; Feng, G. Y.; Lin, L.; Sun, D. D.; Yang, D. Y.; Xie, L. et al. Single atom-doped nanosonosensitizers for mutually optimized sono/chemo-nanodynamic therapy of triple negative breast cancer. Adv. Sci. 2023, 10, 2206244.

[143]

Zhu, X. Y.; Wu, J. B.; Liu, R. X.; Xiang, H. D.; Zhang, W. Q.; Chang, Q. C.; Wang, S. S.; Jiang, R.; Zhao, F.; Li, Q. Q. et al. Engineering single-atom iron nanozymes with radiation-enhanced self-cascade catalysis and self-supplied H2O2 for radio-enzymatic therapy. ACS Nano 2022, 16, 18849–18862.

[144]

Martino, F.; Amici, G.; Rosner, M.; Ronco, C.; Novara, G. Gadolinium-based contrast media nephrotoxicity in kidney impairment: The physio-pathological conditions for the perfect murder. J. Clin. Med. 2021, 10, 271.

[145]

Liu, S. G.; Jiang, Y. X.; Liu, P. C.; Yi, Y.; Hou, D. Y.; Li, Y.; Liang, X.; Wang, Y. F.; Li, Z.; He, J. et al. Single-atom gadolinium nano-contrast agents with high stability for tumor T1 magnetic resonance imaging. ACS Nano 2023, 17, 8053–8063.

[146]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[147]

Li, X. N.; Yang, X. F.; Zhang, J. M.; Huang, Y. Q.; Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 2019, 9, 2521–2531.

[148]

Wang, Z. Z.; Wu, J. J. X.; Zheng, J. J.; Shen, X. M.; Yan, L.; Wei, H.; Gao, X. F.; Zhao, Y. L. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 2021, 12, 6866.

[149]

Li, S. R.; Zhou, Z. J.; Tie, Z. X.; Wang, B.; Ye, M.; Di, L.; Cui, R.; Liu, W.; Wan, C. H.; Liu, Q. Y. et al. Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 2022, 13, 827.

[150]

Qi, R.; Zhu, B. E.; Han, Z. K.; Gao, Y. High-throughput screening of stable single-atom catalysts in CO2 reduction reactions. ACS Catal. 2022, 12, 8269–8278.

[151]

Sun, M. Z.; Dougherty, A. W.; Huang, B. L.; Li, Y. L.; Yan, C. H. Accelerating atomic catalyst discovery by theoretical calculations-machine learning strategy. Adv. Energy Mater. 2020, 10, 1903949.

Nano Research
Pages 13056-13076
Cite this article:
Cai S, Zhang W, Yang R. Emerging single-atom nanozymes for catalytic biomedical uses. Nano Research, 2023, 16(12): 13056-13076. https://doi.org/10.1007/s12274-023-5864-y
Topics:
Part of a topical collection:

1016

Views

12

Crossref

12

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 27 April 2023
Revised: 21 May 2023
Accepted: 23 May 2023
Published: 15 July 2023
© Tsinghua University Press 2023
Return