Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Real-time monitoring of ball–shoe interactions can provide essential information for high-quality instruction in personalized soccer training, yet existing monitoring systems struggle to reflect specific forces, loci, and durations of action. Here, we design a self-powered piezoelectric sensor constructed by the gradient carbon nanotube/polyvinylidene fluoride (CNT/PVDF) composite to monitor the interactions between the ball and the shoe. Two-dimensional Raman mapping demonstrates the gradient structure of CNT/PVDF prepared by programmable electrospinning combined with a hot pressing. Benefitting from the synergistic effect of local polarization caused by the enrichment of CNT and the reduced diffusion of silver patterns in gradient structure, the as-prepared composite exhibits enhanced force-electric coupling with an excellent sensitivity of 80 mV/N and durability over 15,000 cycles. On this basis, we conformally attach a 3 × 3 sensor array to a soccer shoe, enabling real-time acquisition of kick position and contact force, which could provide quantitative assessment and personalize guidance for the training of soccer players. This self-powered piezoelectric sensor network system offers a promising paradigm for wearable monitoring under strong impact forces.
Garrido, D.; Burriel, B.; Resta, R.; Del Campo, R. L.; Buldú, J. M. Heatmaps in soccer: Event vs tracking datasets. Chaos, Solitons Fract. 2022, 165, 112827.
Baysal, S.; Duygulu, P. Sentioscope: A soccer player tracking system using model field particles. IEEE Trans. Circ. Syst. Video Technol. 2016, 26, 1350–1362.
Cano, P.; Ruiz-del-Solar, J. Robust tracking of soccer robots using random finite sets. IEEE Intell. Syst. 2017, 32, 22–29.
Gao, Y. Y.; Yan, C.; Huang, H. C.; Yang, T.; Tian, G.; Xiong, D.; Chen, N. J.; Chu, X.; Zhong, S.; Deng, W. L. et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 2020, 30, 1909603.
Gou, G. Y.; Li, X. S.; Jian, J. M.; Tian, H.; Wu, F.; Ren, J.; Geng, X. S.; Xu, J. D.; Qiao, Y. C.; Yan, Z. Y. et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 2022, 8, eabn2156.
Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.
Wang, S. L.; Deng, W. L.; Yang, T.; Tian, G.; Xiong, D.; Xiao, X.; Zhang, H. R.; Sun, Y.; Ao, Y.; Huang, J. F. et al. Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 2023, 16, 1330–1337.
Lee, S.; Franklin, S.; Hassani, F. A.; Yokota, T.; Nayeem, O. G.; Wang, Y.; Leib, R.; Cheng, G.; Franklin, D. W.; Someya, T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020, 370, 966–970.
Zhu, P.; Du, H. F.; Hou, X. Y.; Lu, P.; Wang, L.; Huang, J.; Bai, N. N.; Wu, Z. G.; Fang, N. X.; Guo, C. F. Skin–electrode iontronic interface for mechanosensing. Nat. Commun. 2021, 12, 4731.
Wen, D. L.; Pang, Y. X.; Huang, P.; Wang, Y. L.; Zhang, X. R.; Deng, H. T.; Zhang, X. S. Silk fibroin-based wearable all-fiber multifunctional sensor for smart clothing. Adv. Fiber Mater. 2022, 4, 873–884.
Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.
Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.
Tang, Q.; Pu, X. J.; Zeng, Q. X.; Yang, H. M.; Li, J.; Wu, Y.; Guo, H. Y.; Huang, Z. Y.; Hu, C. G. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy 2019, 66, 104087.
Zhang, B. B.; Wu, Z. Y.; Lin, Z. M.; Guo, H. Y.; Chun, F. J.; Yang, W. Q.; Wang, Z. L. All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 2021, 43, 37–44.
Chen, Z. F.; Wang, Z.; Li, X. M.; Lin, Y. X.; Luo, N. Q.; Long, M. Z.; Zhao, N.; Xu, J. B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507–4513.
Yang, Y.; Pan, H.; Xie, G. Z.; Jiang, Y. D.; Chen, C. X.; Su, Y. J.; Wang, Y.; Tai, H. L. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors Actuat. A:Phys. 2020, 301, 111789.
Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581.
Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.
Liu, J. Q.; Tian, G.; Yang, W. Q.; Deng, W. L. Recent progress in flexible piezoelectric devices toward human–machine interactions. Soft Sci. 2022, 2, 22.
Jiang, F.; Zhou, X. R.; Lv, J.; Chen, J.; Chen, J. T.; Kongcharoen, H.; Zhang, Y. H.; Lee, P. S. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Adv. Mater. 2022, 34, 2200042.
Li, S.; Zhang, Y.; Wang, Y. L.; Xia, K. L.; Yin, Z.; Wang, H. M.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Zhu, M. J. et al. Physical sensors for skin-inspired electronics. InfoMat 2020, 2, 184–211.
Panda, P. K.; Sahoo, B. PZT to lead free piezo ceramics: A review. Ferroelectrics 2015, 474, 128–143.
Jo, W.; Dittmer, R.; Acosta, M.; Zang, J. D.; Groh, C.; Sapper, E.; Wang, K.; Rödel, J. Giant electric-field-induced strains in lead-free ceramics for actuator applications—Status and perspective. J. Electroceram. 2012, 29, 71–93.
Sun, E. W.; Cao, W. W. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124–210.
Hwang, G. T.; Park, H.; Lee, J. H.; Oh, S.; Park, K. I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C. K.; No, K. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 2014, 26, 4880–4887.
Gao, J. H.; Ke, X. Q.; Acosta, M.; Glaum, J.; Ren, X. B. High piezoelectricity by multiphase coexisting point: Barium titanate derivatives. MRS Bull. 2018, 43, 595–599.
Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A. Jr; Rodel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305.
Jeong, C. K.; Baek, C.; Kingon, A. I.; Park, K. I.; Kim, S. H. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 2018, 14, 1704022.
Shin, Y. J.; Kim, Y.; Kang, S. J.; Nahm, H. H.; Murugavel, P.; Kim, J. R.; Cho, M. R.; Wang, L. F.; Yang, S. M.; Yoon, J. G. et al. Interface control of ferroelectricity in an SrRuO3/BaTiO3/SrRuO3 capacitor and its critical thickness. Adv. Mater. 2017, 29, 1602795.
Wang, L. F.; Cho, M. R.; Shin, Y. J.; Kim, J. R.; Das, S.; Yoon, J. G.; Chung, J. S.; Noh, T. W. Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO3/SrTiO3 composite barriers. Nano Lett. 2016, 16, 3911–3918.
Ruan, L. X.; Yao, X. N.; Chang, Y. F.; Zhou, L. Q.; Qin, G. W.; Zhang, X. M. Properties and applications of the β phase poly(vinylidene fluoride). Polymers 2018, 10, 228.
Hong, Y.; Wang, B.; Long, Z. H.; Zhang, Z. M.; Pan, Q. Q.; Liu, S. Y.; Luo, X. W.; Yang, Z. B. Hierarchically interconnected piezoceramic textile with a balanced performance in piezoelectricity, flexibility, toughness, and air permeability. Adv. Funct. Mater. 2021, 31, 2104737.
Wang, Z. H.; Cheng, J.; Xie, Y.; Wang, Y. H.; Yu, Z. H.; Li, S.; Li, L. T.; Dong, S. X.; Wang, H. Lead-free piezoelectric composite based on a metamaterial for electromechanical energy conversion. Adv. Mater. Technol. 2022, 7, 2200650.
Chen, X. L.; Li, X. M.; Shao, J. Y.; An, N. L.; Tian, H. M.; Wang, C.; Han, T. Y.; Wang, L.; Lu, B. H. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017, 13, 1604245.
Shi, S. H.; Zhai, Y. Z.; Zhang, Y. L.; Wang, H.; Li, Z. C.; Fan, X.; Zhang, Y. Y.; Liu, J. J.; Li, P.; Zhai, J. W. et al. Ultra-sensitive flexible piezoelectric energy harvesters inspired by pine branches for detection. Nano Energy 2022, 99, 107422.
Gao, X.; Zheng, M. P.; Lv, H. J.; Zhang, Y. Z.; Zhu, M. K.; Hou, Y. D. Ultrahigh sensitive flexible sensor based on textured piezoelectric composites for preventing sports injuries. Compos. Sci. Technol. 2022, 229, 109693.
Zhu, M. M.; Li, J. L.; Yu, J. Y.; Li, Z. L.; Ding, B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem., Int. Ed. 2022, 61, e202200226.
Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Self-healing fibrous membranes. Angew. Chem., Int. Ed. 2022, 61, e202208949.
Qi, F. W.; Zeng, Z. C.; Yao, J.; Cai, W. L.; Zhao, Z. Y.; Peng, S. P.; Shuai, C. J. Constructing core–shell structured BaTiO3@carbon boosts piezoelectric activity and cell response of polymer scaffolds. Mater. Sci. Eng.: C 2021, 126, 112129.
Tu, S. B.; Jiang, Q.; Zhang, X. X.; Alshareef, H. N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369–3377.
Tian, G.; Deng, W. L.; Xiong, D.; Yang, T.; Zhang, B. B.; Ren, X. R.; Lan, B. L.; Zhong, S.; Jin, L.; Zhang, H. R. et al. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep. Phys. Sci. 2022, 3, 100814.
Xu, R.; Guo, J. F.; Mi, S.; Wen, H. F.; Pang, F.; Ji, W.; Cheng, Z. H. Advanced atomic force microscopies and their applications in two-dimensional materials: A review. Mater. Futures 2022, 1, 032302.
Tian, G.; Deng, W. L.; Yang, T.; Xiong, D.; Zhang, H. R.; Lan, B. L.; Deng, L.; Zhang, B. B.; Jin, L.; Huang, H. C. et al. Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites. Small 2023, 19, 2207947.
Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.
Shi, S. H.; Pan, Z. B.; Cheng, Y.; Zhai, Y. Z.; Zhang, Y. L.; Ding, X. P.; Liu, J. J.; Zhai, J. W.; Xu, J. K. Three-dimensional polypyrrole induced high-performance flexible piezoelectric nanogenerators for mechanical energy harvesting. Compos. Sci. Technol. 2022, 219, 109260.
Zhang, C.; Fan, Y. J.; Li, H. Y.; Li, Y. Y.; Zhang, L.; Cao, S. B.; Kuang, S. Y.; Zhao, Y. B.; Chen, A. H.; Zhu, G. et al. Fully rollable lead-free poly(vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes. ACS Nano 2018, 12, 4803–4811.
Cai, S. Y.; Xu, C. S.; Jiang, D. F.; Yuan, M. L.; Zhang, Q. W.; Li, Z. L.; Wang, Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 2022, 93, 106904.
Zhou, Z.; Du, X. X.; Luo, J. K.; Yao, L. Q.; Zhang, Z.; Yang, H.; Zhang, Q. L. Coupling of interface effects and porous microstructures in translucent piezoelectric composites for enhanced energy harvesting and sensing. Nano Energy 2021, 84, 105895.
Araujo, C. F.; Nolasco, M. M.; Ribeiro, A. M. P.; Ribeiro-Claro, P. J. A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440.
Butler, H. J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N. J.; Gardner, B.; Martin-Hirsch, P. L. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016, 11, 664–687.
Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.
Jiang, J. Y.; Shen, Z. H.; Qian, J. F.; Dan, Z. K.; Guo, M. F.; He, Y.; Lin, Y. H.; Nan, C. W.; Chen, L. Q.; Shen, Y. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 2019, 62, 220–229.
Lu, X.; Qu, H.; Skorobogatiy, M. Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: Comparative study and potential applications. ECS Trans. 2018, 86, 57–69.
Kang, H. B.; Han, C. S.; Pyun, J. C.; Ryu, W. H.; Kang, C. Y.; Cho, Y. S. (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators. Compos. Sci. Technol. 2015, 111, 1–8.
Choi, M.; Murillo, G.; Hwang, S.; Kim, J. W.; Jung, J. H.; Chen, C. Y.; Lee, M. Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator. Nano Energy 2017, 33, 462–468.
Mishra, M.; Roy, A.; Dash, S.; Mukherjee, S. Flexible nano-GFO/PVDF piezoelectric-polymer nano-composite films for mechanical energy harvesting. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 338, 012026.