AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual-functional conductive nanofilm absorber

Hongyan Liu1,§Zheng Xie2,§Weiming Liu1Hongdong Li3Yue Yan1Xiaoli Wang3,4( )
Beijing Institute of Aeronautical Materials, Beijing 100095, China
College of Rare Earth and Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

§ Hongyan Liu and Zheng Xie contributed equally to this work.

Show Author Information

Graphical Abstract

A novel hybrid photocatalytic-thermal technology, with dual functions of heat absorption and photocatalysis, was proposed to make full use of the solar energy. In addition to the broadband spectral usage, the virtues of inexpensiveness and environmental friendliness make it a facile alternative to be applied in solar energy transformation.

Abstract

Converting solar energy by to other forms of energy has attracted a lot of interest from academy to industry. However, the overall utilization efficiency of solar energy is inferior due to the limited effective solar spectrum range. Here, in order to utilize the broadband solar spectrum more efficiently, a novel hybrid absorber structure was proposed, which consists of a four-layer planar nanofilm with dual functions of heat absorption and photocatalysis. The average absorption in the visible range is larger than 0.95, and in the near-infrared spectral region, the average absorption is still larger than 0.85. The overall absorption of the absorber is over 0.86, while the thermal emittance is lower than 0.04, which can lead to remarkable thermal utilization efficiency. Moreover, the full range of the solar irradiance can be utilized by incorporating the photocatalytic TiO2 layer into the absorber, which is active in the ultraviolet spectral range. In addition to the broadband spectral usage, the virtues of inexpensiveness and environmental friendliness make it a facile alternative to be applied in solar energy transformation.

Electronic Supplementary Material

Download File(s)
12274_2023_5870_MOESM1_ESM.pdf (348.6 KB)

References

[1]

Liang, J. H.; Wang, N.; Zhang, Q. X.; Liu, B. F.; Kong, X. B.; Wei, C. C.; Zhang, D. K.; Yan, B. J.; Zhao, Y.; Zhang, X. D. Exploring the mechanism of a pure and amorphous black-blue TiO2: H thin film as a photoanode in water splitting. Nano Energy 2017, 42, 151–156.

[2]

Yang, Y.; Jin, Q.; Mao, D.; Qi, J.; Wei, Y. Z.; Yu, R. B.; Li, A. R.; Li, S. Z.; Zhao, H. J.; Ma, Y. W. et al. Dually ordered porous TiO2-rGO composites with controllable light absorption properties for efficient solar energy conversion. Adv. Mater. 2017, 29, 1604795.

[3]

Li, Z.; Shi, L.; Franklin, D.; Koul, S.; Kushima, A.; Yang, Y. Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy 2018, 51, 400–407.

[4]

Tian, Y.; De Arquer, F. P. G.; Dinh, C. T.; Favraud, G.; Bonifazi, M.; Li, J.; Liu, M.; Zhang, X. X.; Zheng, X. L.; Kibria, M. G. et al. Enhanced solar-to-hydrogen generation with broadband epsilon-near-zero nanostructured photocatalysts. Adv. Mater. 2017, 29, 1701165.

[5]

Mandal, J.; Wang, D.; Overvig, A. C.; Shi, N. N.; Paley, D.; Zangiabadi, A.; Cheng, Q.; Barmak, K.; Yu, N. F.; Yang, Y. Scalable, “dip-and-dry” fabrication of a wide-angle plasmonic selective absorber for high-efficiency solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702156.

[6]

Cao, F.; Huang, Y.; Tang, L.; Sun, T. Y.; Boriskina, S. V.; Chen, G.; Ren, Z. F. Toward a high-efficient utilization of solar radiation by quad-band solar spectral splitting. Adv. Mater. 2016, 28, 10659–10663.

[7]

Mojiri, A.; Taylor, R.; Thomsen, E.; Rosengarten, G. Spectral beam splitting for efficient conversion of solar energy—A review. Renew. Sustain. Energy Rev. 2013, 28, 654–663.

[8]

Wang, L.; Zhou, X. M.; Nguyen, N. T.; Hwang, I.; Schmuki, P. Strongly enhanced water splitting performance of Ta3N5 nanotube photoanodes with subnitrides. Adv. Mater. 2016, 28, 2432–2438.

[9]

Yang, Z. P.; Ci, L.; Bur, J. A.; Lin, S. Y.; Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451.

[10]

Li, M. Z.; Guler, U.; Li, Y. N.; Rea, A.; Tanyi, E. K.; Kim, Y.; Noginov, M. A.; Song, Y. L.; Boltasseva, A.; Shalaev, V. M. et al. Plasmonic biomimetic nanocomposite with spontaneous subwavelength structuring as broadband absorbers. ACS Energy Lett. 2018, 3, 1578–1583.

[11]

Qin, D. D.; Bi, Y. P.; Feng, X. J.; Wang, W.; Barber, G. D.; Wang, T.; Song, Y. M.; Lu, X. Q.; Mallouk, T. E. Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chem. Mater. 2015, 27, 4180–4183.

[12]

Zhang, T. T.; Rahman, Z. U.; Wei, N.; Liu, Y. P.; Liang, J.; Wang, D. A. In situ growth of single-crystal TiO2 nanorod arrays on Ti substrate: Controllable synthesis and photoelectro-chemical water splitting. Nano Res. 2017, 10, 1021–1032.

[13]

Jeong, K.; Deshmukh, P. R.; Park, J.; Sohn, Y.; Shin, W. G. ZnO-TiO2 core–shell nanowires: A sustainable photoanode for enhanced Photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2018, 6, 6518–6526.

[14]

Mi, Y.; Wen, L. Y.; Xu, R.; Wang, Z. J.; Cao, D. W.; Fang, Y. G.; Lei, Y. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Adv. Energy Mater. 2016, 6, 1501496.

[15]

Hulkkonen, H.; Sah, A.; Niemi, T. All-metal broadband optical absorbers based on block copolymer nanolithography. ACS Appl. Mater. Interfaces 2018, 10, 42941–42947.

[16]

Zhou, L.; Zhuang, S. D.; He, C. Y.; Tan, Y. L.; Wang, Z. L.; Zhu, J. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 2017, 32, 195–200.

[17]

Butburee, T.; Bai, Y.; Wang, H. J.; Chen, H. J.; Wang, Z. L.; Liu, G.; Zou, J.; Khemthong, P.; Lu, G. Q. M.; Wang, L. Z. 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance. Adv. Mater. 2018, 30, 1705666.

[18]

Choi, M.; Kang, G. M.; Shin, D.; Barange, N.; Lee, C. W.; Ko, D. H.; Kim, K. Lithography-free broadband ultrathin-film absorbers with gap-Plasmon resonance for organic photovoltaics. ACS Appl. Mater. Interfaces 2016, 8, 12997–13008.

[19]

Liu, Z. Q.; Liu, X. S.; Huang, S.; Pan, P. P.; Chen, J.; Liu, G. Q.; Gu, G. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl. Mater. Interfaces 2015, 7, 4962–4968.

[20]

Liu, D.; Yu, H. T.; Yang, Z.; Duan, Y. Y. Ultrathin planar broadband absorber through effective medium design. Nano Res. 2016, 9, 2354–2363.

[21]

Song, H. M.; Guo, L. Q.; Liu, Z. J.; Liu, K.; Zeng, X.; Ji, D. X.; Zhang, N.; Hu, H. F.; Jiang, S. H.; Gan, Q. Q. Nanocavity enhancement for ultra-thin film optical absorber. Adv. Mater. 2014, 26, 2737–2743.

[22]

Najafi-Ashtiani, H.; Akhavan, B.; Jing, F. J.; Bilek, M. M. Transparent conductive dielectric–metal–dielectric structures for electrochromic applications fabricated by high-power impulse magnetron sputtering. ACS Appl. Mater. Interfaces 2019, 11, 14871–14881.

[23]

Liu, H. Y.; Peng, J. J.; Liu, W. M.; Wang, Y. L.; Wu, J. H.; Zhang, G. L.; Wang, X. L.; Yan, Y. Strong interference-based ultrathin conductive anti-reflection coating on metal substrates for optoelectronics. NPG Asia Mater. 2018, 10, 309–317.

[24]

Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24.

Nano Research
Pages 13375-13380
Cite this article:
Liu H, Xie Z, Liu W, et al. Dual-functional conductive nanofilm absorber. Nano Research, 2023, 16(12): 13375-13380. https://doi.org/10.1007/s12274-023-5870-0
Topics:
Part of a topical collection:

828

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 April 2023
Revised: 17 May 2023
Accepted: 24 May 2023
Published: 26 June 2023
© Tsinghua University Press 2023
Return