AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Green synthesis of novel conjugated poly(perylene diimide) as cathode with stable sodium storage

Jinyun Zheng( )Xinxin LiuWenbin LiWenjie LiXiangming FengWeihua Chen( )
College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

The novel conjugated poly(perylene diimide) was prepared by green synthesis method and used as organic cathode for sodium-ion battery with better rate performance.

Abstract

Conjugated polymers of organic carbonyl compounds are promising electrode materials for energy storage devices owing to the renewable development prospects, structural variability, and better insolubility in electrolyte. However, the synthesis methods in solution are cumbersome and complicated in separation and purification, and require the introduction of functional groups and use of expensive catalysts. In this work, a novel conjugated poly(3,4,9,10-perylenetetracarboxylic diimide) (PPI) with superior thermal stability and lower solubility was prepared successfully by a green facile mechanical ball milling strategy. The PPI exhibits enhanced electrochemical dynamics performance, preferable rate capability, higher discharge capacity, and excellent cycling stability of 450 cycles at 0.2 C with higher capacity retention of 85.7% when used as cathode material for sodium-ion battery. Furthermore, the in-situ X-ray diffraction (XRD) and in-situ Raman investigations combined with the Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) were carried out to investigate the sodium storage mechanism. The results indicate that only two sodium ions are bound to two opposite carbonyl groups of PPI monomer to form sodium enolates during normal charging and discharging and to deliver available reversible capacity.

Electronic Supplementary Material

Download File(s)
12274_2023_5871_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Zhao, C. L.; Wang, Q. D.; Yao, Z. P.; Wang, J. L.; Sánchez-Lengeling, B.; Ding, F. X.; Qi, X. G.; Lu, Y. X.; Bai, X. D.; Li, B. H. et al. Rational design of layered oxide materials for sodium-ion batteries. Science. 2020, 370, 708–711.

[2]

Rudola, A.; Sayers, R.; Wright, C. J.; Barker, J. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat. Energy 2023, 8, 215–218.

[3]

Hu, Y. Y.; Wu, X. W.; Wen, Z. Y. Progress and prospect of engineering research on energy storage sodium sulfur battery-material and structure design for improving battery safety. Energy Storage Sci. Technol. 2021, 10, 781–799.

[4]

Yuan, M. M.; Liu, H. J.; Ran, F. Fast-charging cathode materials for lithium & sodium ion batteries. Mater. Today 2023, 63, 360–379.

[5]

Wang, Y.; Zhao, X. D.; Jin, J. T.; Shen, Q. Y.; Zhang, N.; Qu, X. H.; Liu, Y. C.; Jiao, L. F. Low-cost layered oxide cathode involving cationic and anionic redox with a complete solid-solution sodium-storage behavior. Energy Storage Mater. 2022, 47, 44–50.

[6]

Song, K. M.; Wang, X.; Xie, Z. K.; Zhao, Z. W.; Fang, Z.; Zhang, Z. F.; Luo, J.; Yan, P. F.; Peng, Z. Q.; Chen, W. H. Ultrathin CuF2-rich solid–electrolyte interphase induced by cation-tailored double electrical layer toward durable sodium storage. Angew. Chem., Int. Ed. 2023, 62, e202216450.

[7]

Zhang, H.; Gao, Y.; Liu, X. H.; Yang, Z.; He, X. X.; Li, L.; Qiao, Y.; Chen, W. H.; Zeng, R. H.; Wang, Y. et al. Organic cathode materials for sodium-ion batteries: From fundamental research to potential commercial application. Adv. Funct. Mater. 2022, 32, 2107718.

[8]

Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4, 127–142.

[9]

Qu, Z. Y.; Zhang, X. Y.; Xiao, R.; Sun, Z. H.; Li, F. Application of organosulfur compounds in lithium-sulfur batteries. Acta Phys. Chim. Sin. 2023, 39, 2301019.

[10]

Shi, Y. Q.; Yang, J. K.; Yang, J. X.; Wang, Z. P.; Chen, Z. F.; Xu, Y. H. Quinone-amine polymer nanoparticles prepared through facile precipitation polymerization as ultrafast and ultralong cycle life cathode materials for lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2111307.

[11]

Li, D.; Wang, C.; Hu, J. H.; Tang, W.; Jia, S.; Guo, M. C.; Fan, C. Phenanthraquinone-based polymer organic cathodes for highly efficient Na-ion batteries. Chem. Eng. J. 2022, 449, 137745.

[12]

Hu, Y.; Yu, Q. H.; Tang, W.; Cheng, M. Z.; Wang, X. X.; Liu, S. H.; Gao, J.; Wang, M.; Xiong, M.; Hu, J. H. et al. Ultra-stable, ultra-long-lifespan, and ultra-high-rate Na-ion batteries using small-molecule organic cathodes. Energy Storage Mater. 2021, 41, 738–747.

[13]

Raj, M. R.; Kim, N.; Lee, G. A perylene-based aromatic polyimide with multiple carbonyls enabling high-capacity and stable organic lithium and sodium ion batteries. Sustainable Energy Fuels 2021, 5, 175–187.

[14]

Yang, H. Q.; Lee, J.; Cheong, J. Y.; Wang, Y. F.; Duan, G. G.; Hou, H. Q.; Jiang, S. H.; Kim, I. D. Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: Fundamentals, recent advances, and challenges. Energy Environ. Sci. 2021, 14, 4228–4267.

[15]

Raj, M. R.; Mangalaraja, R. V.; Contreras, D.; Varaprasad, K.; Reddy, M. V.; Adams, S. Perylenedianhydride-based polyimides as organic cathodes for rechargeable lithium and sodium batteries. ACS Appl. Energy Mater. 2020, 3, 240–252.

[16]

Wang, J.; Liu, H. C.; Du, C. Y.; Zhang, X. Y.; Liu, Y.; Yao, H. Y.; Sun, Z. H.; Guan, S. W. Conjugated diketone-linked polyimide cathode material for organic lithium-ion batteries. Chem. Eng. J. 2022, 444, 136598.

[17]

Zhang, W. J.; Zheng, S. B.; Ma, T.; Sun, T. J.; Tao, Z. L. Hollow tubular conjugated organic polymer for lithium batteries. Nano Res. 2023, 16, 2474–2479.

[18]

Lakraychi, A. E.; Deunf, E.; Fahsi, K.; Jimenez, P.; Bonnet, J. P.; Djedaini-Pilard, F.; Bécuwe, M.; Poizot, P.; Dolhem, F. An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone for organic Li-ion batteries. J. Mater. Chem. A 2018, 6, 19182–19189.

[19]

Li, M. J.; Hicks, R. P.; Chen, Z. F.; Luo, C.; Guo, J. C.; Wang, C. S.; Xu, Y. H. Electrolytes in organic batteries. Chem. Rev. 2023, 123, 1712–1773.

[20]

Fan, L.; Xie, H. B.; Hu, Y. Y.; Caixiang, Z.; Rao, A. M.; Zhou, J.; Lu, B. G. A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 2023, 16, 305–315.

[21]

Gu, M. Y.; Rao, A. M.; Zhou, J.; Lu, B. G. In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ Sci. 2023, 16, 1166–1175.

[22]

Chen, X. D.; Zhang, H.; Ci, C.; Sun, W. W.; Wang, Y. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries. ACS Nano 2019, 13, 3600–3607.

[23]

Ma, J.; Kong, Y.; Luo, Y.; Huang, Y. S.; Han, S. Flexible polyimide nanorod/graphene framework as an organic cathode for rechargeable sodium-ion batteries. J. Phys. Chem. C 2021, 125, 6564–6569.

[24]

Zhou, G. Y.; Miao, Y. E.; Wei, Z. X.; Mo, L. L.; Lai, F. L.; Wu, Y.; Ma, J. M.; Liu, T. X. Bioinspired micro/nanofluidic ion transport channels for organic cathodes in high-rate and ultrastable lithium/sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1804629.

[25]

Ham, Y.; Ri, V.; Kim, J.; Yoon, Y.; Lee, J.; Kang, K.; An, K. S.; Kim, C.; Jeon, S. Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Res. 2021, 14, 1382–1389.

[26]

Zheng, S. B.; Miao, L. C.; Sun, T. J.; Li, L.; Ma, T.; Bao, J. Q.; Tao, Z. L.; Chen, J. An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries. J. Mater. Chem. A 2021, 9, 2700–2705.

[27]

Kapaev, R. R.; Scherbakov, A. G.; Shestakov, A. F.; Stevenson, K. J.; Troshin, P. A. m-Phenylenediamine as a building block for polyimide battery cathode materials. ACS Appl. Energy Mater. 2021, 4, 4465–4472.

[28]

Lei, X.; Zheng, Y. P.; Zhang, F.; Wang, Y.; Tang, Y. B. Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Storage Mater. 2020, 30, 34–41.

[29]

Zeng, R. H.; Wu, Y. W.; Qian, S. H.; Li, L.; Zhang, H.; Chen, Q.; Luo, Y. F.; Chou, S. L. Graphene-supported naphthalene-based polyimide composite as a high-performance sodium storage cathode. ACS Appl. Mater. Interfaces 2022, 14, 11448–11456.

[30]

Zhang, Q.; He, Y.; Lin, G. Y.; Ma, X. L.; Xiao, Z. Y.; Shi, D. A.; Yang, Y. K. In situ growth of polyimide nanoarrays on conductive carbon supports for high-rate charge storage and long-lived metal-free cathodes. J. Mater. Chem. A 2021, 9, 10652–10660.

[31]

Deng, W. W.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Yang, H. X. A perylene diimide crystal with high capacity and stable cyclability for Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 21095–21099.

[32]

Zhou, G. Y.; Mo, L. L.; Zhou, C. Y.; Wu, Y.; Lai, F. L.; Lv, Y.; Ma, J. M.; Miao, Y. E.; Liu, T. X. Ultra-strong capillarity of bioinspired micro/nanotunnels in organic cathodes enabled high-performance all-organic sodium-ion full batteries. Chem. Eng. J. 2021, 420, 127597.

[33]

Wang, D. X.; You, X. X.; Wu, M. L.; Huang, H. X.; Chen, L.; Wu, D.; Xia, J. L. Molecular regulation on carbonyl-based organic cathodes: Toward high-rate and long-lifespan potassium-organic batteries. ACS Appl. Mater. Interfaces 2021, 13, 16396–16406.

[34]

Jin, Z. X.; Cheng, Q.; Bao, S. T.; Zhang, R. W.; Evans, A. M.; Ng, F.; Xu, Y. Y.; Steigerwald, M. L.; McDermott, A. E.; Yang, Y. et al. Iterative synthesis of contorted macromolecular ladders for fast-charging and long-life lithium batteries. J. Am. Chem. Soc. 2022, 144, 13973–13980.

[35]

Bai, W. B.; Chen, L.; Qian, Y.; Tian, X.; Zheng, S. J.; Lin, Y. C.; Wei, F. F.; Jian, R. K. Multicolor fluorescent probes for volatile organic vapors based on poly(tetraphenylethylene-co-phenylene)s prepared via solid-state oxidative coupling polymerization. Dyes Pigm. 2022, 207, 110685.

[36]

Grzybowski, M.; Skonieczny, K.; Butenschon, H.; Gryko, D. T. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem., Int. Ed. 2013, 52, 9900–9930.

[37]

Wang, C. L.; Dong, H. L.; Jiang, L.; Hu, W. P. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500.

[38]

Zhao, C.; Chen, Z. F.; Wang, W.; Xiong, P. X.; Li, B. F.; Li, M. J.; Yang, J. X.; Xu, Y. H. In situ electropolymerization enables ultrafast long cycle life and high-voltage organic cathodes for lithium batteries. Angew. Chem., Int. Ed. 2020, 59, 11992–11998.

[39]

Chiş, V.; Mile, G.; Ştiufiuc, R.; Leopold, N.; Oltean, M. Vibrational and electronic structure of PTCDI and melamine-PTCDI complexes. J. Mol. Struct 2009, 924–926, 47–53.

[40]

Sun, J. G.; Ye, H. L.; Oh, J. A. S.; Sun, Y.; Plewa, A.; Wang, Y. M.; Wu, T.; Zeng, K. Y.; Lu, L. Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na + insertion/extraction for full sodium ion battery. Nano Res. 2022, 15, 2123–2129.

[41]

Li, L.; Nie, P.; Chen, Y. B.; Wang, J. Novel acetic acid induced Na-rich Prussian blue nanocubes with iron defects as cathodes for sodium ion batteries. J. Mater. Chem. A 2019, 7, 12134–12144.

[42]

Hou, J. R.; Hadouchi, M.; Sui, L.; Liu, J.; Tang, M. X.; Kan, W. H.; Avdeev, M.; Zhong, G. M.; Liao, Y. K.; Lai, Y. H. et al. Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution. Energy Storage Mater. 2021, 42, 307–316.

[43]

Chen, M. Z.; Hua, W. B.; Xiao, J.; Cortie, D.; Chen, W. H.; Wang, E. H.; Hu, Z.; Gu, Q. F.; Wang, X. L.; Indris, S. et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 2019, 10, 1480.

[44]

Goujon, N.; Casado, N.; Patil, N.; Marcilla, R.; Mecerreyes, D. Organic batteries based on just redox polymers. Prog. Polym. Sci. 2021, 122, 101449.

[45]

Wang, J.; Yao, H. Y.; Du, C. Y.; Guan, S. W. Polyimide Schiff base as a high-performance anode material for lithium-ion batteries. J. Power Sources 2021, 482, 228931.

[46]

Banda, H.; Damien, D.; Nagarajan, K.; Raj, A.; Hariharan, M.; Shaijumon, M. M. Twisted perylene diimides with tunable redox properties for organic sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1701316.

[47]

Wang, J.; Liu, H. C.; Du, C. Y.; Liu, Y.; Liu, B.; Guan, H. R.; Guan, S. W.; Sun, Z. H.; Yao, H. Y. Molecular structure design of planar zwitterionic polymer electrode materials for all-organic symmetric batteries. Chem. Sci. 2022, 13, 11614–11622.

[48]

Zhang, Q.; He, Y.; Mei, P.; Cui, X.; Yang, Y. K.; Lin, Z. Q. Multi-functional PEDOT-engineered sodium titanate nanowires for sodium-ion batteries with synchronous improvements in rate capability and structural stability. J. Mater. Chem. A 2019, 7, 19241–19247.

[49]

Bai, Y. F.; Fu, W. B.; Chen, W. H.; Chen, Z. C.; Pan, X. J.; Lv, X. X.; Wu, J. C.; Pan, X. B. Perylenetetracarboxylic diimide as a high-rate anode for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 24454–24461.

[50]

Liu, N. N.; Wu, X.; Zhang, Y.; Yin, Y. Y.; Sun, C. Z.; Mao, Y. C.; Fan, L. S.; Zhang, N. Q. Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries. Adv. Sci. 2020, 7, 2000146.

[51]

Wu, D. Q.; Jing, F.; Xi, X.; Ma, L.; Lu, D.; Yang, P.; Liu, R. L. An acid-pasting approach towards perylenetetracarboxylic diimide based lithium/sodium ion battery cathodes with high rate performances. J. Colloid Interface Sci. 2019, 538, 597–604.

[52]

Wang, H. G.; Yuan, S.; Si, Z. J.; Zhang, X. B. Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy Environ. Sci. 2015, 8, 3160–3165.

Nano Research
Pages 9538-9545
Cite this article:
Zheng J, Liu X, Li W, et al. Green synthesis of novel conjugated poly(perylene diimide) as cathode with stable sodium storage. Nano Research, 2023, 16(7): 9538-9545. https://doi.org/10.1007/s12274-023-5871-z
Topics:

1187

Views

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 22 April 2023
Revised: 24 May 2023
Accepted: 24 May 2023
Published: 30 June 2023
© Tsinghua University Press 2023
Return