AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A biomimetic adipocyte mesenchymal stem cell membrane-encapsulated drug delivery system for the treatment of rheumatoid arthritis

Chaoyu Gu1,§Shaoying Yang1,§Xuesong Liu1Yi Jin2Ye Yu1Liangjing Lu1( )
Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China

§ Chaoyu Gu and Shaoying Yang contributed equally to this work.

Show Author Information

Graphical Abstract

A biomimetic adipocyte mesenchymal stem cell membrane-encapsulated drug delivery system for the treatment of rheumatoid arthritis.

Abstract

Rheumatoid arthritis (RA) is a chronic, progressive, and inflammatory systemic autoimmune disease. Effective drug therapy for RA is hindered by severe side effects due to inefficient delivery to the disease site and broad drug distribution. Inspired by biomimetic biology, this study developed a drug delivery system of adipose-derived mesenchymal stem cell membrane-encapsulated nanoparticles for the treatment of RA. The intact adipose-derived mesenchymal stem cell (ADSC) membrane was coated on poly (lactic-co-glycolic acid) (PLGA) nanoparticles and loaded with tacrolimus (FK506), a T cell inhibitor. The ADSC membrane encapsulated on nanoparticles retains the original homing properties of ADSC, targeting the inflamed joints and enhancing tacrolimus anti-inflammatory effect. Both in vitro and in vivo experiments proved that the synergistic effect of the ADSC-membrane and tacrolimus effectively inhibited inflammation in vivo and reduced the expression of pro-inflammatory factors (IL-1β, IL-6, tumor necrosis factor-α (TNF-α)), and increased the expression of anti-inflammatory factors (IL-10). In addition, collagen-induced arthritis (CIA) model results also showed that the drug delivery system could effectively reduce the destruction of articular cartilage and bone in mice without causing any adverse effects. This study provided a new biomimetic targeting strategy to reshape the inflammatory microenvironment by modulating T cell subsets, providing new inspiration for RA treatment.

Electronic Supplementary Material

Download File(s)
12274_2023_5877_MOESM1_ESM.pdf (830.9 KB)

References

[1]

Scherer, H. U.; Häupl, T.; Burmester, G. R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020, 110, 102400.

[2]

Zhao, J. N.; Guo, S. C.; Schrodi, S. J.; He, D. Y. Molecular and cellular heterogeneity in rheumatoid arthritis: Mechanisms and clinical implications. Front. Immunol. 2021, 12, 790122.

[3]

Giachi, A.; Cugno, M.; Gualtierotti, R. Disease-modifying anti-rheumatic drugs improve the cardiovascular profile in patients with rheumatoid arthritis. Front. Cardiovasc. Med. 2022, 9, 1012661.

[4]

Finckh, A.; Gilbert, B.; Hodkinson, B.; Bae, S. C.; Thomas, R.; Deane, K. D.; Alpizar-Rodriguez, D.; Lauper, K. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 2022, 18, 591–602.

[5]

Zhang, W. J.; Chen, Y.; Liu, Q.; Zhou, M.; Wang, K.; Wang, Y. Z.; Nie, J. S.; Gui, S. Y.; Peng, D. Y.; He, Z. G. et al. Emerging nanotherapeutics alleviating rheumatoid arthritis by readjusting the seeds and soils. J. Control. Release 2022, 345, 851–879.

[6]

Buch, M. H.; Eyre, S.; McGonagle, D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. Nat. Rev. Rheumatol. 2021, 17, 17–33.

[7]

Fraenkel, L.; Bathon, J. M.; England, B. R.; St. Clair, E. W.; Arayssi, T.; Carandang, K.; Deane, K. D.; Genovese, M.; Huston, K. K.; Kerr, G. et al. 2021 American college of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res 2021, 73, 924–939.

[8]

Huang, J.; Fu, X. K.; Chen, X. X.; Li, Z.; Huang, Y. H.; Liang, C. Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol. 2021, 12, 686155.

[9]

Wei, K.; Jiang, P.; Zhao, J. N.; Jin, Y. H.; Zhang, R. R.; Chang, C.; Xu, L. X.; Xu, L. S.; Shi, Y. M.; Guo, S. C. et al. Biomarkers to predict DMARDs efficacy and adverse effect in rheumatoid arthritis. Front. Immunol. 2022, 13, 865267.

[10]

Milewska, S.; Niemirowicz-Laskowska, K.; Siemiaszko, G.; Nowicki, P.; Wilczewska, A. Z.; Car, H. Current trends and challenges in pharmacoeconomic aspects of nanocarriers as drug delivery systems for cancer treatment. Int. J. Nanomed. 2021, 16, 6593–6644.

[11]

Zaimy, M. A.; Saffarzadeh, N.; Mohammadi, A.; Pourghadamyari, H.; Izadi, P.; Sarli, A.; Moghaddam, L. K.; Paschepari, S. R.; Azizi, H.; Torkamandi, S. et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017, 24, 233–243.

[12]

Han, X.; Wang, C.; Liu, Z. Red blood cells as smart delivery systems. Bioconjugate Chem. 2018, 29, 852–860.

[13]

Mukhtar, M.; Ali, H.; Ahmed, N.; Munir, R.; Talib, S.; Khan, A. S.; Ambrus, R. Drug delivery to macrophages: A review of nano-therapeutics targeted approach for inflammatory disorders and cancer. Expert Opin. Drug Deliv. 2020, 17, 1239–1257.

[14]

Alcayaga-Miranda, F.; Cuenca, J.; Khoury, M. Antimicrobial activity of mesenchymal stem cells: Current status and new perspectives of antimicrobial peptide-based therapies. Front. Immunol. 2017, 8, 339.

[15]

Huang, P. S.; Wang, X. L.; Liang, X. Y.; Yang, J.; Zhang, C. N.; Kong, D. L.; Wang, W. W. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater. 2019, 85, 1–26.

[16]

Tang, L.; He, S.; Yin, Y.; Liu, H. N.; Hu, J. Y.; Cheng, J.; Wang, W. Combination of nanomaterials in cell-based drug delivery systems for cancer treatment. Pharmaceutics 2021, 13, 1888.

[17]

Oroojalian, F.; Beygi, M.; Baradaran, B.; Mokhtarzadeh, A.; Shahbazi, M. A. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small 2021, 17, 2006484.

[18]

Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.

[19]

Zhang, R. T.; Wu, S. Q.; Ding, Q.; Fan, Q. Z.; Dai, Y.; Guo, S. W.; Ye, Y.; Li, C. H.; Zhou, M. L. Recent advances in cell membrane-camouflaged nanoparticles for inflammation therapy. Drug Deliv. 2021, 28, 1109–1119.

[20]

Bukhari, S. N. A. Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials. Pharmaceutics 2022, 14, 866.

[21]

Lopes, J.; Lopes, D.; Pereira-Silva, M.; Peixoto, D.; Veiga, F.; Hamblin, M. R.; Conde, J.; Corbo, C.; Zare, E. N.; Ashrafizadeh, M. et al. Macrophage cell membrane-cloaked nanoplatforms for biomedical applications. Small Methods 2022, 6, 2200289.

[22]

Wang, Y. L.; Zhang, P.; Wei, Y.; Shen, K. L.; Xiao, L. Y.; Miron, R. J.; Zhang, Y. F. Cell-membrane-display nanotechnology. Adv. Healthc. Mater. 2021, 10, 2001014.

[23]

Wang, M.; Xin, Y. F.; Cao, H.; Li, W. L.; Hua, Y. F.; Webster, T. J.; Zhang, C.; Tang, W. J.; Liu, Z. M. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater. Sci. 2021, 9, 1088–1103.

[24]

Fang, R. H.; Jiang, Y.; Fang, J. C.; Zhang, L. F. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017, 128, 69–83.

[25]

Zhang, S. Q.; Fu, Q.; Zhang, Y. J.; Pan, J. X.; Zhang, L.; Zhang, Z. R.; Liu, Z. M. Surface loading of nanoparticles on engineered or natural erythrocytes for prolonged circulation time: Strategies and applications. Acta Pharmacol. Sin. 2021, 42, 1040–1054.

[26]

Zhang, Q. Z.; Dehaini, D.; Zhang, Y.; Zhou, J. L.; Chen, X. Y.; Zhang, L. F.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 2018, 13, 1182–1190.

[27]

Zhang, T. Y.; Lin, R. Y.; Wu, H. H.; Jiang, X. C.; Gao, J. Q. Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv. Drug Deliv. Rev. 2022, 185, 114300.

[28]

Karamini, A.; Bakopoulou, A.; Andreadis, D.; Gkiouras, K.; Kritis, A. Therapeutic potential of mesenchymal stromal stem cells in rheumatoid arthritis: A systematic review of in vivo studies. Stem Cell Rev. Rep. 2020, 16, 276–287.

[29]

Gilkeson, G. S. Safety and efficacy of mesenchymal stromal cells and other cellular therapeutics in rheumatic diseases in 2022: A review of what we know so far. Arthritis Rheumatol. 2022, 74, 752–765.

[30]

Toledano Furman, N. E.; Lupu-Haber, Y.; Bronshtein, T.; Kaneti, L.; Letko, N.; Weinstein, E.; Baruch, L.; Machluf, M. Reconstructed stem cell nanoghosts: A natural tumor targeting platform. Nano Lett. 2013, 13, 3248–3255.

[31]

Harrell, C. R.; Volarevic, A.; Djonov, V. G.; Jovicic, N.; Volarevic, V. Mesenchymal stem cell: A friend or foe in anti-tumor immunity. Int. J. Mol. Sci. 2021, 22, 12429.

[32]

Lopez-Santalla, M.; Mancheño-Corvo, P.; Menta, R.; Lopez-Belmonte, J.; DelaRosa, O.; Bueren, J. A.; Dalemans, W.; Lombardo, E.; Garin, M. I. Human adipose-derived mesenchymal stem cells modulate experimental autoimmune arthritis by modifying early adaptive T cell responses. Stem Cells 2015, 33, 3493–3503.

[33]

Vyas, S. P.; Hansda, A. K.; Goswami, R. Rheumatoid arthritis: 'Melting pot' of T helper subsets. Int. Rev. Immunol. 2019, 38, 212–231.

[34]

Gao, Y.; Cai, W. W.; Zhou, Y.; Li, Y. H.; Cheng, J. W.; Wei, F. Immunosenescence of T cells: A key player in rheumatoid arthritis. Inflamm. Res. 2022, 71, 1449–1462.

[35]

Tu, J. J.; Huang, W.; Zhang, W. W.; Mei, J. W.; Zhu, C. A tale of two immune cells in rheumatoid arthritis: The crosstalk between macrophages and T cells in the synovium. Front. Immunol. 2021, 12, 655477.

[36]

Kerschbaumer, A.; Sepriano, A.; Smolen, J. S.; van der Heijde, D.; Dougados, M.; van Vollenhoven, R.; McInnes, I. B.; Bijlsma, J. W. J.; Burmester, G. R.; de Wit, M. et al. Efficacy of pharmacological treatment in rheumatoid arthritis: A systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. 2020, 79, 744–759.

[37]

Kaneko, Y.; Kawahito, Y.; Kojima, M.; Nakayama, T.; Hirata, S.; Kishimoto, M.; Endo, H.; Seto, Y.; Ito, H.; Nishida, K. et al. Efficacy and safety of tacrolimus in patients with rheumatoid arthritis-a systematic review and meta-analysis. Mod. Rheumatol. 2021, 31, 61–69.

[38]

Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.

[39]

Brand, D. D.; Latham, K. A.; Rosloniec, E. F. Collagen-induced arthritis. Nat. Protoc. 2007, 2, 1269–1275.

[40]

Qiu, J. T.; Wu, B. W.; Goodman, S. B.; Berry, G. J.; Goronzy, J. J.; Weyand, C. M. Metabolic control of autoimmunity and tissue inflammation in rheumatoid arthritis. Front. Immunol. 2021, 12, 652771.

Nano Research
Pages 11401-11410
Cite this article:
Gu C, Yang S, Liu X, et al. A biomimetic adipocyte mesenchymal stem cell membrane-encapsulated drug delivery system for the treatment of rheumatoid arthritis. Nano Research, 2023, 16(8): 11401-11410. https://doi.org/10.1007/s12274-023-5877-6
Topics:

852

Views

6

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 24 March 2023
Revised: 26 May 2023
Accepted: 30 May 2023
Published: 04 July 2023
© Tsinghua University Press 2023
Return