AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Flagship Article

Ultrafine MoOx clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation

Huidong Shen1Xinyu Zhan1Song Hong1Liang Xu1Chunming Yang2( )Alex W. Robertson3Leiduan Hao1( )Feng Fu2Zhenyu Sun1( )
State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China
Department of Physics, University of Warwick, Coventry CV 47AL, UK
Show Author Information

Graphical Abstract

Decorating graphitic carbon nitride (g-C3N4) with ultrafine MoOx and introducing dual nitrogen/oxygen defects are demonstrated to synergistically promote the photocatalytic O2 activation process.

Abstract

Photocatalytic O2 activation to generate reactive oxygen species is crucially important for purifying organic pollutants, yet remains a challenge due to poor adsorption of O2 and low efficiency of electron transfer. Herein, we demonstrate that ultrafine MoOx clusters anchored on graphitic carbon nitride (g-C3N4) with dual nitrogen/oxygen defects promote the photocatalytic activation of O2 to generate ·O2 for the degradation of tetracycline hydrochloride (TCH). A range of characterization techniques and density functional theory (DFT) calculations reveal that the introduction of the nitrogen/oxygen dual defects and MoOx clusters enhances the O2 adsorption energy from −2.77 to −2.94 eV. We find that MoOx clusters with oxygen vacancies (Ov) and surface Ov-mediated Moδ+ (3 ≥ δ ≥ 2) possess unpaired localized electrons, which act as electron capture centers to transfer electrons to the MoOx clusters. These electrons can then transfer to the surface adsorbed O2, thus promoting the photocatalytic conversion of O2 to ·O2 and, simultaneously, realizing the efficient separation of photogenerated electron–hole pairs. Our fully-optimized MoOx/g-C3N4 catalyst with dual nitrogen/oxygen defects manifests outstanding photoactivities, achieving 79% degradation efficiency toward TCH within 120 min under visible light irradiation, representing nearly 7 times higher activity than pristine g-C3N4. Finally, based on the results of liquid chromatograph mass spectrometry and DFT calculations, the possible photocatalytic degradation pathways of TCH were proposed.

Electronic Supplementary Material

Download File(s)
12274_2023_5880_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Chen, C. C.; Ma, W. H.; Zhao, J. C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 2010, 39, 4206–4219.

[2]

Shi, Y. B.; Yang, Z. P.; Shi, L. J.; Li, H.; Liu, X. P.; Zhang, X.; Cheng, J. D.; Liang, C.; Cao, S. Y.; Guo, F. R. et al. Surface boronizing can weaken the excitonic effects of BiOBr nanosheets for efficient O2 activation and selective NO oxidation under visible light irradiation. Environ. Sci. Technol. 2022, 56, 14478–14486.

[3]

Romero, E.; Castellanos, J. R. G.; Gadda, G.; Fraaije, M. W.; Mattevi, A. Same substrate, many reactions: Oxygen activation in flavoenzymes. Chem. Rev. 2018, 118, 1742–1769.

[4]

Ye, X. H.; Li, Y.; Luo, P. P.; He, B. C.; Cao, X. X.; Lu, T. B. Iron sites on defective BiOBr nanosheets: Tailoring the molecular oxygen activation for enhanced photocatalytic organic synthesis. Nano Res. 2022, 15, 1509–1516.

[5]

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

[6]

Wang, W. K.; Zhang, W.; Cai, Y. J.; Wang, Q.; Deng, J.; Chen, J. S.; Jiang, Z. F.; Zhang, Y. Z.; Yu, C. Introducing B–N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets. Nano Res. 2023, 16, 2177–2184.

[7]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

[8]

Wang, L. Y.; Wang, K. H.; He, T. T.; Zhao, Y.; Song, H.; Wang, H. Graphitic carbon nitride-based photocatalytic materials: Preparation strategy and application. ACS Sustainable Chem. Eng. 2020, 8, 16048–16085.

[9]

Li, W. L.; Wei, Z.; Zhu, K. J.; Wei, W. Q.; Yang, J.; Jing, J. F.; Phillips, D. L.; Zhu, Y. F. Nitrogen-defect induced trap states steering electron–hole migration in graphite carbon nitride. Appl. Catal. B Environ. 2022, 306, 121142.

[10]

Zhan, H. Y.; Zhou, Q. X.; Li, M. M.; Zhou, R. R.; Mao, Y. S.; Wang, P. F. Photocatalytic O2 activation and reactive oxygen species evolution by surface B–N bond for organic pollutants degradation. Appl. Catal. B Environ. 2022, 310, 121329.

[11]

Shen, H. D.; Yang, M. M.; Hao, L. D.; Wang, J. R.; Strunk, J.; Sun, Z. Y. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.

[12]

Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407.

[13]

Chu, X. Y.; Qu, Y.; Zada, A.; Bai, L. L.; Li, Z. J.; Yang, F.; Zhao, L. N.; Zhang, G. L.; Sun, X. J.; Yang, Z. D. et al. Ultrathin phosphate-modulated Co phthalocyanine/g-C3N4 heterojunction photocatalysts with single Co-N4(II) sites for efficient O2 activation. Adv. Sci. 2020, 7, 2001543.

[14]

Horkans, J.; Shafer, M. W. Effect of orientation, composition, and electronic factors in the reduction of O2 on single crystal electrodes of the conducting oxides of molybdenum and tungsten. J. Electrochem. Soc. 1977, 124, 1196–1202.

[15]

Martínez-Huerta, M. V.; Rodríguez, J. L.; Tsiouvaras, N.; Peña, M. A.; Fierro, J. L. G.; Pastor, E. Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: Structural characteristics and performance for methanol electrooxidation. Chem. Mater. 2008, 20, 4249–4259.

[16]

Hu, Z. F.; Liu, G.; Chen, X. Q.; Shen, Z. R.; Yu, J. C. Enhancing charge separation in metallic photocatalysts: A case study of the conducting molybdenum dioxide. Adv. Funct. Mater. 2016, 26, 4445–4455.

[17]

Zhang, H. B.; Zhang, P.; Qiu, M.; Dong, J. C.; Zhang, Y. F.; Lou, X. W. Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv. Mater. 2019, 31, 1804883.

[18]
Rocchiccioli-Deltcheff, C.; Aouissi, A.; Bettahar, M. M.; Launay, S.; Fournier, M. Catalysis by 12-molybdophosphates: 1. Catalytic reactivity of 12-molybdophosphoric acid related to its thermal behavior investigated through IR, Raman, polarographic, and X-ray diffraction studies: A comparison with 12-molybdosilicic acid. J. Catal. 1996, 164, 16–27.
[19]

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

[20]
Liu, H.; Cheng, D. G.; Chen, F. Q.; Zhan, X. L. 2D porous N-deficient g-C3N4 nanosheet decorated with CdS nanoparticles for enhanced visible-light-driven photocatalysis. ACS Sustainable Chem. Eng. 2020, 8, 16897–16904.
[21]

Iqbal, N.; Afzal, A.; Khan, I.; Khan, M. S.; Qurashi, A. Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications. Sci. Rep. 2021, 11, 16886.

[22]

Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

[23]

Cai, J. S.; Huang, J. Y.; Wang, S. C.; Iocozzia, J.; Sun, Z. T.; Sun, J. Y.; Yang, Y. K.; Lai, Y. K.; Lin, Z. Q. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv. Mater. 2019, 31, 1806314.

[24]

Yao, R. Q.; Shi, H.; Wan, W. B.; Wen, Z.; Lang, X. Y.; Jiang, Q. Flexible Co-Mo-N/Au electrodes with a hierarchical nanoporous architecture as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Mater. 2020, 32, 1907214.

[25]

Kashfi-Sadabad, R.; Yazdani, S.; Huan, T. D.; Cai, Z.; Pettes, M. T. Role of oxygen vacancy defects in the electrocatalytic activity of substoichiometric molybdenum oxide. J. Phys. Chem. C 2018, 122, 18212–18222.

[26]

Datta, R. S.; Haque, F.; Mohiuddin, M.; Carey, B. J.; Syed, N.; Zavabeti, A.; Zhang, B.; Khan, H.; Berean, K. J.; Ou, J. Z. et al. Highly active two dimensional α-MoO3−x for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 24223–24231.

[27]

Fu, F.; Shen, H. D.; Sun, X.; Xue, W. W.; Shoneye, A.; Ma, J. N.; Luo, L.; Wang, D. J.; Wang, J. G.; Tang, J. W. Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi2MoO6 for efficient photocatalysis. Appl. Catal. B Environ. 2019, 247, 150–162.

[28]

Zhang, C.; Qin, D. Y.; Zhou, Y.; Qin, F. Z.; Wang, H.; Wang, W. J.; Yang, Y.; Zeng, G. M. Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: Morphology and defect evolution. Appl. Catal. B Environ. 2022, 303, 120904.

[29]

Li, J.; Wu, X. Y.; Pan, W. F.; Zhang, G. K.; Chen, H. Vacancy-rich monolayer BiO2−x as a highly efficient UV, visible, and near-infrared responsive photocatalyst. Angew. Chem., Int. Ed. 2018, 57, 491–495.

[30]

Feng, Y. B.; Wang, C.; Cui, P. X.; Li, C.; Zhang, B.; Gan, L. Y.; Zhang, S. B.; Zhang, X. X.; Zhou, X. Y.; Sun, Z. M. et al. Ultrahigh photocatalytic CO2 reduction efficiency and selectivity manipulation by single-tungsten-atom oxide at the atomic step of TiO2. Adv. Mater. 2022, 34, 2109074.

[31]

Ji, Q. Y.; Cheng, X. Y.; Sun, D. Y.; Wu, Y. J.; Kong, X. C.; He, H.; Xu, Z.; Xu, C. M.; Qi, C. D.; Liu, Y. Z. et al. Persulfate enhanced visible light photocatalytic degradation of iohexol by surface-loaded perylene diimide/acidified biochar. Chem. Eng. J. 2021, 414, 128793.

[32]

Zhang, J.; Pan, Z. H.; Yang, Y.; Wang, P. F.; Pei, C. Y.; Chen, W.; Huang, G. B. Boosting the catalytic activity of a step-scheme In2O3/ZnIn2S4 hybrid system for the photofixation of nitrogen. Chin. J. Catal. 2022, 43, 265–275.

[33]

Gopalapillai, Y.; Hale, B.; Vigneault, B. Effect of major cations (Ca2+, Mg2+, Na+, K+) and anions (SO42−, Cl, NO3) on Ni accumulation and toxicity in aquatic plant (Lemna minor L): Implications for Ni risk assessment. Environ. Toxicol. Chem. 2013, 32, 810–821.

[34]

Fang, H. X.; Guo, H.; Niu, C. G.; Liang, C.; Huang, D. W.; Tang, N.; Liu, H. Y.; Yang, Y. Y.; Li, L. Hollow tubular graphitic carbon nitride catalyst with adjustable nitrogen vacancy: Enhanced optical absorption and carrier separation for improving photocatalytic activity. Chem. Eng. J. 2020, 402, 126185.

[35]

Kumar, A.; Thakur, P. R.; Sharma, G.; Vo, D. V. N.; Naushad, M.; Tatarchuk, T.; García-Peñas, A.; Du, B.; Stadler, F. J. Accelerated charge transfer in well-designed S-scheme Fe@TiO2/boron carbon nitride heterostructures for high performance tetracycline removal and selective photo-reduction of CO2 greenhouse gas into CH4 fuel. Chemosphere 2022, 287, 132301.

[36]

Shen, Q. H.; Wei, L. F.; Bibi, R.; Wang, K.; Hao, D. D.; Zhou, J. C.; Li, N. X. Boosting photocatalytic degradation of tetracycline under visible light over hierarchical carbon nitride microrods with carbon vacancies. J. Hazard. Mater. 2021, 413, 125376.

[37]

Wang, Z. L.; Zhang, Y. F.; Yu, Y. C.; Jia, M. L.; Tao, X. Promoting photocatalytic degradation of tetracycline over in-situ grown single manganese atoms on polymeric carbon nitride. Appl. Surf. Sci. 2022, 593, 153458.

[38]

Li, S. J.; Wang, C. C.; Liu, Y. P.; Cai, M. J.; Wang, Y. N.; Zhang, H. Q.; Guo, Y.; Zhao, W.; Wang, Z. H.; Chen, X. B. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chem. Eng. J. 2022, 429, 132519.

[39]

Pan, C. Q.; Wang, C. Y.; Zhao, X. Y.; Xu, P. Y.; Mao, F. H.; Yang, J.; Zhu, Y. H.; Yu, R. H.; Xiao, S. Y.; Fang, Y. R. et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942–4951.

[40]

Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew. Chem., Int. Ed. 2020, 59, 3685–3690.

[41]

Li, S. N.; Dong, G. H.; Hailili, R.; Yang, L. P.; Li, Y. X.; Wang, F.; Zeng, Y. B.; Wang, C. Y. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B Environ. 2016, 190, 26–35.

[42]

Qian, Y. Y.; Li, D. D.; Han, Y. L.; Jiang, H. L. Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 20763–20771.

[43]

Heidari, S.; Haghighi, M.; Shabani, M. Sono-photodeposition of Ag over sono-fabricated mesoporous Bi2Sn2O7-two dimensional carbon nitride: Type-II plasmonic nano-heterojunction with simulated sunlight-driven elimination of drug. Chem. Eng. J. 2020, 389, 123418.

[44]

Li, D. G.; Wen, C. H.; Huang, J. X.; Zhong, J. P.; Chen, P.; Liu, H. J.; Wang, Z. Q.; Liu, Y.; Lv, W. Y.; Liu, G. G. High-efficiency ultrathin porous phosphorus-doped graphitic carbon nitride nanosheet photocatalyst for energy production and environmental remediation. Appl. Catal. B Environ. 2022, 307, 121099.

[45]

Wang, Y. C.; Wu, J. M. Effect of controlled oxygen vacancy on H2-production through the piezocatalysis and piezophototronics of ferroelectric R3C ZnSnO3 nanowires. Adv. Funct. Mater. 2020, 30, 1907619.

[46]

Ma, H.; He, Y.; Li, X. F.; Sheng, J. P.; Li, J. Y.; Dong, F.; Sun, Y. J. In situ loading of MoO3 clusters on ultrathin Bi2MoO6 nanosheets for synergistically enhanced photocatalytic NO abatement. Appl. Catal. B Environ. 2021, 292, 120159.

Nano Research
Pages 10713-10723
Cite this article:
Shen H, Zhan X, Hong S, et al. Ultrafine MoOx clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation. Nano Research, 2023, 16(8): 10713-10723. https://doi.org/10.1007/s12274-023-5880-y
Topics:

1891

Views

30

Crossref

29

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 03 April 2023
Revised: 15 May 2023
Accepted: 29 May 2023
Published: 15 July 2023
© Tsinghua University Press 2023
Return