AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Biomimetic chitin hydrogel via chemical transformation

Rui-Rui Liu1Qian-Qian Shi2,3Yu-Feng Meng1Yong Zhou2,3( )Li-Bo Mao1 ( )Shu-Hong Yu1 ( )
Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
Department of Dental Implantology, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
Show Author Information

Graphical Abstract

Mechanically and chemically stable chitin hydrogels with biomimetic structures are fabricated via the acetylation of precursory chitosan hydrogels.

Abstract

Chitin hydrogel has been recognized as a promising material for various biomedical applications because of its biocompatibility and biodegradability. However, the fabrication of strong chitin hydrogel remains a big challenge because of the insolubility of chitin in many solvents and the reduced chain length of chitin regenerated from solutions. We herein introduce the fabrication of chitin hydrogel with biomimetic structure through the chemical transformation of chitosan, which is a water-soluble deacetylated derivative of chitin. The reacetylation of the amino group in chitosan endows the obtained chitin hydrogel with outstanding resistance to swelling, degradation, extreme temperature and pH conditions, and organic solvents. The chitin hydrogel has excellent mechanical properties while retaining a high water content (more than 95 wt.%). It also shows excellent antifouling performance that it resists the adhesion of proteins, bacteria, blood, and cells. Moreover, as the initial chitosan solution can be feasibly frozen and templated by ice crystals, the chitin hydrogel structure can be either nacre-like or wood-like depending on the freezing method of the precursory chitosan solution. Owing to these anisotropic structures, such chitin hydrogel can exhibit anisotropic mechanics and mass transfer capabilities. The current work provides a rational strategy to fabricate chitin hydrogels and paves the way for its practical applications as a superior biomedical material.

Electronic Supplementary Material

Download File(s)
12274_2023_5886_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Zhao, X. H.; Chen, X. Y.; Yuk, H.; Lin, S. T.; Liu, X. Y.; Parada, G. Soft materials by design: Unconventional polymer networks give extreme properties. Chem. Rev. 2021, 121, 4309–4372.

[2]

Vernerey, F. J.; Lalitha Sridhar, S.; Muralidharan, A.; Bryant, S. J. Mechanics of 3D cell–hydrogel interactions: Experiments, models, and mechanisms. Chem. Rev. 2021, 121, 11085–11148.

[3]

Zhao, Y.; Song, S. L.; Ren, X. Z.; Zhang, J. M.; Lin, Q.; Zhao, Y. L. Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 2022, 122, 5604–5640.

[4]

Torres-Rendon, J. G.; Femmer, T.; De Laporte, L.; Tigges, T.; Rahimi, K.; Gremse, F.; Zafarnia, S.; Lederle, W.; Ifuku, S.; Wessling, M. et al. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv. Mater. 2015, 27, 2989–2995.

[5]

Silva, S. S.; Mano, J. F.; Reis, R. L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 2017, 19, 1208–1220.

[6]

Xue, K.; Wang, X. Y.; Yong, P. W.; Young, D. J.; Wu, Y. L.; Li, Z. B.; Loh, X. J. Hydrogels as emerging materials for translational biomedicine. Adv. Therap. 2019, 2, 1800088.

[7]

Montazerian, H.; Davoodi, E.; Baidya, A.; Baghdasarian, S.; Sarikhani, E.; Meyer, C. E.; Haghniaz, R.; Badv, M.; Annabi, N.; Khademhosseini, A. et al. Engineered hemostatic biomaterials for sealing wounds. Chem. Rev. 2022, 122, 12864–12903.

[8]

Fuchs, S.; Ernst, A. U.; Wang, L. H.; Shariati, K.; Wang, X.; Liu, Q. S.; Ma, M. L. Hydrogels in emerging technologies for type 1 diabetes. Chem. Rev. 2021, 121, 11458–11526.

[9]

Liu, H. T.; Wang, Y. Q.; Cui, K. L.; Guo, Y. Q.; Zhang, X.; Qin, J. H. Advances in hydrogels in organoids and organs-on-a-chip. Adv. Mater. 2019, 31, 1902042.

[10]

Liu, J.; Lin, S. T.; Liu, X. Y.; Qin, Z.; Yang, Y. Y.; Zang, J. F.; Zhao, X. H. Fatigue-resistant adhesion of hydrogels. Nat. Commun. 2020, 11, 1071.

[11]

Yang, H.; Ji, M. K.; Yang, M.; Shi, M. X. Z.; Pan, Y. D.; Zhou, Y. F.; Qi, H. J.; Suo, Z. G.; Tang, J. D. Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter 2021, 4, 1935–1946.

[12]

Hua, M. T.; Wu, S. W.; Ma, Y. F.; Zhao, Y. S.; Chen, Z. L.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X. Y.; He, X. M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021, 590, 594–599.

[13]

Yang, R. H.; Li, G.; Zhuang, C. Y.; Yu, P.; Ye, T. J.; Zhang, Y.; Shang, P. Y.; Huang, J. J.; Cai, M.; Wang, L. et al. Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci. Adv. 2021, 7, eabg3816.

[14]

Campea, M. A.; Majcher, M. J.; Lofts, A.; Hoare, T. A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications. Adv. Funct. Mater. 2021, 31, 2102355.

[15]

Jiang, L. B.; Su, D. H.; Ding, S. L.; Zhang, Q. C.; Li, Z. F.; Chen, F. C.; Ding, W.; Zhang, S. T.; Dong, J. Salt-assisted toughening of protein hydrogel with controlled degradation for bone regeneration. Adv. Funct. Mater. 2019, 29, 1901314.

[16]

Ma, P. Q.; Chen, Y.; Lai, X. Y.; Zheng, J.; Ye, E. Y.; Loh, X. J.; Zhao, Y.; Parikh, B. H.; Su, X. Y.; You, M. L. et al. The translational application of hydrogel for organoid technology: Challenges and future perspectives. Macromol. Biosci. 2021, 21, 2100191.

[17]

Yang, J. P.; Xue, B.; Zhou, Y. Y.; Qin, M.; Wang, W.; Cao, Y. Spray-painted hydrogel coating for marine antifouling. Adv. Mater. Technol. 2021, 6, 2000911.

[18]

Wen, C. Y.; Guo, H. S.; Yang, J.; Li, Q. S.; Zhang, X. Y.; Sui, X.; Cao, M. Y.; Zhang, L. Zwitterionic hydrogel coated superhydrophilic hierarchical antifouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex conditions. Chem. Eng. J. 2021, 421, 130344.

[19]

Wang, H. B.; Wu, Y. H.; Cui, C. Y.; Yang, J. H.; Liu, W. G. Antifouling super water absorbent supramolecular polymer hydrogel as an artificial vitreous body. Adv. Sci. 2018, 5, 1800711.

[20]

Huang, T.; Liu, H. W.; Liu, P. M.; Liu, P. S.; Li, L.; Shen, J. Zwitterionic copolymers bearing phosphonate or phosphonic motifs as novel metal-anchorable anti-fouling coatings. J. Mater. Chem. B 2017, 5, 5380–5389.

[21]

Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S. L.; Mutton, R.; Clare, A. S.; Wang, S.; Liu, Y. L.; Zhao, Q.; D’Souza, F. et al. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules 2008, 9, 2775–2783.

[22]

Chan, D.; Chien, J. C.; Axpe, E.; Blankemeier, L.; Baker, S. W.; Swaminathan, S.; Piunova, V. A.; Zubarev, D. Y.; Maikawa, C. L.; Grosskopf, A. K. et al. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv. Mater. 2022, 34, 2109764.

[23]

Buzzacchera, I.; Vorobii, M.; Kostina, N. Y.; de Los Santos Pereira, A.; Riedel, T.; Bruns, M.; Ogieglo, W.; Möller, M.; Wilson, C. J.; Rodriguez-Emmenegger, C. Polymer brush-functionalized chitosan hydrogels as antifouling implant coatings. Biomacromolecules 2017, 18, 1983–1992.

[24]

Muir, V. G.; Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 2021, 121, 10908–10949.

[25]

Li, Y.; Xue, B.; Cao, Y. 100th anniversary of macromolecular science viewpoint: Synthetic protein hydrogels. ACS Macro. Lett. 2020, 9, 512–524.

[26]

He, Q. Y.; Huang, Y.; Wang, S. Y. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 2018, 28, 1705069.

[27]

Zhu, Z. H.; Ling, S. J.; Yeo, J.; Zhao, S. W.; Tozzi, L.; Buehler, M. J.; Omenetto, F.; Li, C. M.; Kaplan, D. L. High-strength, durable all-silk fibroin hydrogels with versatile processability toward multifunctional applications. Adv. Funct. Mater. 2018, 28, 1704757.

[28]

Zheng, H. Y.; Zuo, B. Q. Functional silk fibroin hydrogels: Preparation, properties, and applications. J. Mater. Chem. B 2021, 9, 1238–1258.

[29]

Yao, X.; Zou, S. Z.; Fan, S. N.; Niu, Q. Q.; Zhang, Y. P. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Mater. Today Bio 2022, 16, 100381.

[30]

Xu, Q. H.; Torres, J. E.; Hakim, M.; Babiak, P. M.; Pal, P.; Battistoni, C. M.; Nguyen, M.; Panitch, A.; Solorio, L.; Liu, J. C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R Rep. 2021, 146, 100641.

[31]

Bai, L.; Liu, L.; Esquivel, M.; Tardy, B. L.; Huan, S. Q.; Niu, X.; Liu, S. X.; Yang, G. H.; Fan, Y. M.; Rojas, O. J. Nanochitin: Chemistry, structure, assembly, and applications. Chem. Rev. 2022, 122, 11604–11674.

[32]

Pillai, C. K. S.; Paul, W.; Sharma, C. P. Chitin and chitosan polymers: Chemistry, solubility, and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678.

[33]

Shen, X. P.; Shamshina, J. L.; Berton, P.; Gurau, G.; Rogers, R. D. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications. Green Chem. 2016, 18, 53–75.

[34]

Yang, Y. W.; Zhang, S. C.; Bian, X. E.; Xia, T.; Lu, A.; Zhang, L. N.; Wang, Y. F.; Duan, B. In situ exfoliated silk fibroin nanoribbons enhanced chitin hydrogel for bile duct restoration. Chem. Eng. J. 2021, 422, 130088.

[35]

Yu, N. X.; Wang, X. Y.; Qiu, L.; Cai, T. M.; Jiang, C. J.; Sun, Y.; Li, Y. B.; Peng, H. L.; Xiong, H. Bacteria-triggered hyaluronan/AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application. Chem. Eng. J. 2020, 380, 122582.

[36]

Fang, Y.; Duan, B.; Lu, A.; Liu, M. L.; Liu, H. L.; Xu, X. J.; Zhang, L. N. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromolecules 2015, 16, 1410–1417.

[37]

Xu, D. D.; Huang, J. C.; Zhao, D.; Ding, B. B.; Zhang, L. N.; Cai, J. High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 2016, 28, 5844–5849.

[38]

Bi, S. C.; Li, F.; Qin, D.; Wang, M. Y.; Yuan, S. P.; Cheng, X. J.; Chen, X. G. Construction of chitin functional materials based on a “green” alkali/urea solvent and their applications in biomedicine: Recent advance. Appl. Mater. Today. 2021, 23, 101030.

[39]

Wang, J.; Yuan, B.; Han, R. P. S. Modulus of elasticity of randomly and aligned polymeric scaffolds with fiber size dependency. J. Mech. Behav. Biomed. Mater. 2018, 77, 314–320.

[40]

Tian, B. R.; Hua, S. Y.; Tian, Y.; Liu, J. Y. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: A review. J. Mater. Chem. B 2020, 8, 10050–10064.

[41]

Park, B.; Shin, J. H.; Ok, J.; Park, S.; Jung, W.; Jeong, C.; Choy, S.; Jo, Y. J.; Kim, T. I. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 2022, 376, 624–629.

[42]

Cui, Z. K.; Kim, S.; Baljon, J. J.; Wu, B. M.; Aghaloo, T.; Lee, M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat. Commun. 2019, 10, 3523.

[43]

Zhou, L. Y.; Ramezani, H.; Sun, M.; Xie, M. J.; Nie, J.; Lv, S.; Cai, J.; Fu, J. Z.; He, Y. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater. Sci. 2020, 8, 5020–5028.

[44]

Jiao, J.; Huang, J. J.; Zhang, Z. J. Hydrogels based on chitosan in tissue regeneration: How do they work? A mini review. J. Appl. Polym. Sci. 2019, 136, 47235.

[45]

Hamedi, H.; Moradi, S.; Hudson, S. M.; Tonelli, A. E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018, 199, 445–460.

[46]

Fu, J.; Yang, F. C.; Guo, Z. G. The chitosan hydrogels: From structure to function. New J. Chem. 2018, 42, 17162–17180.

[47]

Triunfo, M.; Tafi, E.; Guarnieri, A.; Salvia, R.; Scieuzo, C.; Hahn, T.; Zibek, S.; Gagliardini, A.; Panariello, L.; Coltelli, M. B. et al. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep. 2022, 12, 6613.

[48]

Dimzon, I. K. D.; Knepper, T. P. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int. J. Biol. Macromol. 2015, 72, 939–945.

[49]

Zhang, R. N.; Liu, Y. N.; He, M. R.; Su, Y. L.; Zhao, X. T.; Elimelech, M.; Jiang, Z. Y. Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924.

Nano Research
Pages 771-777
Cite this article:
Liu R-R, Shi Q-Q, Meng Y-F, et al. Biomimetic chitin hydrogel via chemical transformation. Nano Research, 2024, 17(2): 771-777. https://doi.org/10.1007/s12274-023-5886-5
Topics:
Part of a topical collection:

1260

Views

113

Downloads

10

Crossref

9

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 10 April 2023
Revised: 20 May 2023
Accepted: 29 May 2023
Published: 01 July 2023
© Tsinghua University Press 2023
Return